A nickel-catalyzed method for the site-selective hydrogen isotope exchange (HIE) of C(sp(2)) H bonds in nitrogen heteroarenes is described and applied to the tritiation of pharmaceuticals. The alpha-diimine nickel hydride complex [((DI)-D-iPr)Ni(mu(2)-H)](2) ((DI)-D-iPr = N,N'-bis(2,6-diisopropylphenyl)-2,3-butanediimine) mediates efficient HIE when employed as a single component precatalyst or generated in situ from readily available and air-stable metal and ligand precursors (DI)-D-iPr, [(NEt3)Ni(OPiv)(2)](2) (Piv = pivaloyl) and (EtO)(3)SiH). The nickel catalyst offers distinct advantages over existing methods, including: (i) high HIE activity at low D-2 or T-2 pressure; (ii) tolerance of functional groups, including aryl chlorides, alcohols, secondary amides, and sulfones; (iii) activity with nitrogen-rich molecules such as the chemotherapeutic imatinib; and (iv) the ability to promote HIE in sterically hindered positions generally inaccessible with other transition metal catalysts. Representative active pharmaceutical ingredients were tritiated with specific activities in excess of the thresholds required for drug absorption, distribution, metabolism, and excretion studies (1 Ci/mmol) and for protein receptor ligand binding assays (15 Ci/mmol). The activity and selectivity of the nickel-catalyzed method are demonstrated by comparison with the current state-of-the-art single-site (iridium and iron) and heterogeneous (Raney nickel and rhodium black) catalysts. A pathway involving C(sp(2)) H activation by a alpha-diimine nickel hydride monomer is consistent with the experimentally measured relative rate constants for HIE with electronically disparate pyridines, the pressure-dependence of activity, positional selectivity preferences, and kinetic isotope effects.
Site-selective nickel-catalyzed hydrogen isotope exchange in h-heterocycles and its application to the tritiation of pharmaceuticals
Yang, H., Zarate, C., Palmer, W. N., Rivera, N., Hesk, D., & Chirik, P. J. (2018). Site-selective nickel-catalyzed hydrogen isotope exchange in h-heterocycles and its application to the tritiation of pharmaceuticals. ACS Catalysis, 8(11), 10210-10218. https://doi.org/10.1021/acscatal.8b03717
Abstract
Publications Info
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.
Meet the Experts
View All ExpertsRecent Publications
Article
Multifaceted risk for non-suicidal self-injury only versus suicide attempt in a population-based cohort of adults
Article
Long-term effects of a diet supplement containing Cannabis sativa oil and Boswellia serrata in dogs with osteoarthritis following physiotherapy treatments
Article
The effects of exposure to road traffic noise at school on central auditory pathway functional connectivity
Article