• Journal Article

Molecular genetic analysis of plant gravitropism


Lomax, T. (1997). Molecular genetic analysis of plant gravitropism. Gravitational and Space Biology Bulletin, 10(2), 75-82.


The analysis of mutants is a powerful approach for elucidating the components of complex biological processes. A growing number of mutants have been isolated which affect plant gravitropism and the classes of mutants found thus far provide important information about the gravity response mechanism. The wide variety of mutants isolated, especially in Arabidopsis, indicates that gravitropism is a complex, multi-step process. The existence of mutants altered in either root gravitropism alone, shoot gravitropism alone, or both indicates that the root and shoot gravitropic mechanisms have both separate and common steps. Reduced starch mutants have confirmed the role of amyloplasts in sensing the gravity signal. The hormone auxin is thought to act as the transducing signal between the sites of gravity perception (the starch parenchyma cells surrounding the vascular tissue in shoots and the columella cells of root caps) and asymmetric growth (the epidermal cells of the elongation zone(s) of each organ). To date, all mutants that are resistant to high concentrations of auxin have also been found to exhibit a reduced gravitropic response, thus supporting the role of auxin. Not all gravitropic mutants are auxin-resistant, however, indicating that there are additional steps which do not involve auxin. Studies with mutants of tomato which exhibit either reduced or reversed gravitropic responses further support the role of auxin redistribution in gravitropism and suggest that both red light and cytokinin interact with gravitropism through controlling lateral auxin transport. Plant responses to gravity thus likely involve changes in both auxin transport and sensitivity