• Article

Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae

Swi4 and Swi6 form a complex which is required for Start-dependent activation of HO and for high-level expression of G1 cyclin genes CLN1 and CLN2. To identify other regulators of this pathway, we screened for dominant, recessive, conditional, and allele-specific suppressors of swi4 mutants. We isolated 16 recessive suppressors that define three genes, SSF1, SSF5, and SSF9 (suppressor of swi four). Mutations in all three genes bypass the requirement for both Swi4 and Swi6 for HO transcription and activate transcription from reporter genes lacking upstream activating sequences (UASs). SSF5 is allelic with SIN4 (TSF3), a gene implicated in global repression of transcription and chromatin structure, and SSF9 is likely to be a new global repressor of transcription. SSF1 is allelic with CDC68 (SPT16). cdc68 mutations have been shown to increase expression from defective promoters, while preventing transcription from other intact promoters, including CLN1 and CLN2. We find that CDC68 is a required activator of both SWI4 and SWI6, suggesting that CDC68's role at the CLN promoters may be indirect. The target of CDC68 within the SWI4 promoter is complex in that known activating elements (MluI cell cycle boxes) in the SWI4 promoter are required for CDC68 dependence but only within the context of the full-length promoter. This result suggests that there may be both a chromatin structure and a UAS-specific component to Cdc68 function at SWI4. We suggest that Cdc68 functions both in the assembly of repressive complexes that form on many intact promoters in vivo and in the relief of this repression during gene activation.


Lycan, D., Mikesell, G., Bunger, M., & Breeden, L. (1994). Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae. Molecular and Cellular Biology, 14(11), 7455-7465.