RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Cohabitation of sexually naive male and female prairie voles (Microtus ochrogaster) triggers a cascade of physiological changes that result in the formation of stable pair bonds. In the present study we used the expression of c-Fos protein to identify CNS regions activated during initial social contact in heterosexual, male/male and female/female pairs. Sexually naive males and females were randomly assigned to one of five groups: control- no cohabitation, or cohabitation for 1 h with an unrelated opposite sex, an unrelated same sex, an unfamiliar same sex sibling, or removal for 24 h and then repaired with the familiar sibling. Heterosexual pairing resulted in significant increases in c-Fos immunoreactivity (IR) in the posterodorsal and posteroventral medial amygdala (MeA), bed nucleus of the stria terminalis, medial preoptic nucleus, ventrolateral portion of the ventromedial nucleus of the hypothalamus (VMN-VL) in males and females, and the periventricular nucleus of the thalamus in males only. c-Fos IR during intrasexual cohabitation varied with the relationship of the experimental animal to the stimulus animal. Males cohabited with an unfamiliar unrelated male expressed significantly more c-Fos IR in the central amygdala (CeA). While females cohabited with an unfamiliar female (related or unrelated) also displayed increased c-Fos IR in the CeA, this increase was accompanied by an increase in c-Fos IR in the VMN-VL and MeA. The results from this study suggest that early neuronal activation associated with heterosexual cohabitation is similar in both sexes, while neuronal activation is sexually dimorphic in response to intrasexual cohabitation. (C) 2002 Elsevier Science B.V. All rights reserved