• Journal Article

Assessment of the effects of the nitroimidazo-oxazine PA-824 on renal function in healthy subjects

Citation

Ginsberg, A. M., Laurenzi, M. W., Rouse, D., Whitney, K., & Spigelman, M. K. (2009). Assessment of the effects of the nitroimidazo-oxazine PA-824 on renal function in healthy subjects. Antimicrobial Agents and Chemotherapy, 53(9), 3726-3733. DOI: 10.1128/AAC.00112-09

Abstract

The mechanism underlying a dose-dependent, reversible increase in serum creatinine (SC) caused by the administration of PA-824, a novel nitroimidazo-oxazine, was evaluated in 47 healthy male and female volunteers. Subjects were administered either 800 or 1,000 mg PA-824 or matching placebo once daily for 8 days. The following renal function parameters were determined before and during dosing and after a 7-day washout: SC, glomerular filtration rate (GFR; measured as the iohexol clearance), effective renal plasma flow (ERPF; measured as the para-amino hippurate clearance), filtration fraction (FF), creatinine clearance (CrCl), extraglomerular creatinine excretion (EGCE; defined as CrCl minus GFR), blood urea nitrogen (BUN), and uric acid (UA) levels. Eight days' administration of 800 or 1,000 mg PA-824 was associated with increased SC and a trend toward decreased CrCl and EGCE. SC, CrCl, and EGCE values returned to normal/baseline within 1 week's washout. GFR, ERPF, FF, BUN, and UA values were similar across groups during treatment and washout. The reversible increase in SC observed in this and earlier trials of PA-824, thus, did not appear to be the result of a pathological effect on renal function (as measured by GFR, ERPF, FF, BUN, or UA). Pharmacokinetic analyses confirmed that PA-824 exposures were similar to those in previous healthy-volunteer clinical studies. That EGCE declined maximally when drug levels were highest suggests that PA-824 causes creatinine levels to rise by inhibiting renal tubular creatinine secretion. Such an effect, considered clinically benign, has been described for several marketed drugs