Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (2-chloro-4,6-dimethoxy-1,3,5-triazine) by zero valent iron and electrochemical reduction
Dombek, T., Davis, D., Stine, J., & Klarup, D. (2004). Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (2-chloro-4,6-dimethoxy-1,3,5-triazine) by zero valent iron and electrochemical reduction. Environmental Pollution, 129(2), 267-275. https://doi.org/10.1016/j.envpol.2003.10.008
Abstract
To help elucidate the mechanism of dechlorination of chlorinated triazines via metallic iron, terbutylazine (TBA: 2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (DIA: 2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (CDMT: 2-chloro-4,6-dimethoxy-1,3,5-triazine) were degraded via zero valent iron under controlled pH conditions. The lower the solution pH the faster the degradation, with surface area normalized pseudo first order rate constants ranging from 2 (+/-1) X 10(-3) min(-1) m(-2) I for TBA at pH 2.0 to 4 (+/-2) x 10(-5) min(-1) m(-2) I for CDMT at pH 4.0. Hydrogenolysis (dechlorinated) products were observed for TBA and CDMT. Electrochemical reduction on mercury showed similar behavior for all of the triazines studied; the initial product of CDMT bulk electrolysis was the dechlorinated compound. The iron results are consistent with a mechanism involving the addition of surface hydrogen to the surface associated triazine. (C) 2003 Elsevier Ltd. All rights reserved.
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.