Skip to Main Content

RTI uses cookies to offer you the best experience online. By and clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.

Accept
RTI International
  • About
    • Office Locations
    • Executive Leadership
    • Corporate Governance
    • Partner with Us
      • U.S. Government
      • Clients and Funding Agencies
      • Industry and Commercial Clients
      • Foundations and Associations
      • Bilateral Agencies and Multilateral Banks
      • Universities and Academic Research Institutions
      • Suppliers and Small Businesses
    • Commitment to Quality
      • RTI's Client Listening Program
    • Ethics and Human Research Protection
    • Living Our Mission
    • Open Science Initiative
    • Veteran Opportunities at RTI

    About

  • Practice Areas
    • Health
      • Public Health and Well-Being
      • Health Care Transformation
      • Behavioral Health
      • Health Behavior Change
      • Precision Medicine
      • RTI Health Solutions (RTI-HS)
      • RTI Center for Community Health Evaluation and Economics Research
      • Health Equity
      • RTI Health Advance
    • Transformative Research Unit for Equity​
      • Equity Capacity Building Hub
      • Social and Economic Justice Research Collaborative
      • Narrative Research and Community Engagement Lab
    • Education and Workforce Development
      • Early Childhood
      • K-12 Education
      • Postsecondary Education
      • Career and Adult Education and Workforce Development
      • Education Policy, Systems, and Governance
      • Education Research Methodologies
      • Education Technologies
    • International Development
      • Energy for Development
      • Environment
      • Global Food Security, Agriculture, and Nutrition
      • Global Health
      • International Education
      • Monitoring, Evaluation, Research, Learning, and Adapting (MERLA)
      • Youth and Economic Opportunity
      • Building Resilience Against COVID-19 in Developing Countries
      • Water, Sanitation, and Hygiene (WASH)
      • RTI Center for Governance
    • Climate Change
      • Clean Energy Technology and Renewables
      • Climate Finance
      • Climate Justice and Equity
      • Climate Planning, Preparedness and Resilience
      • Climate Policy
      • Climate Vulnerability, Adaptation, and Mitigation
      • Economic Impacts of Climate Change
    • Water
      • Food-Energy-Water Nexus
      • Water Quality
      • WASH (Water, Sanitation, Hygiene)
      • Water Resources Management
    • Energy Research
      • Carbon Capture and Utilization
      • Biomass Conversion
      • Natural Gas
      • Energy Efficiency
      • Industrial Water
      • Syngas Processing
    • Environmental Sciences
      • Air Quality
      • RTI Center for Water Resources
      • Urban Sustainability
      • Toxics
      • Building Resiliency in the FEW Nexus
      • Climate Change Sciences and Analysis
      • Environmental Policy
      • Environmental Justice
      • Sustainable Materials & Waste Management Solutions
    • Justice Research and Policy
      • RTI Center for Community Safety and Crime Prevention
      • RTI Center for Policing Research and Investigative Science
      • Child Well-Being and Family Strengthening
      • RTI Center for Forensic Sciences
      • Evidence-Based Strategies to Reduce Firearm Violence
    • Food Security and Agriculture
      • Market Systems Strengthening
      • Food Safety
      • Food and Nutrition
      • Global Food Security, Agriculture, and Nutrition
      • Climate-Smart Agriculture
      • Agricultural Innovation
      • Obesity Prevention
    • Innovation Ecosystems
      • Innovation Advising
      • Innovation for Economic Growth
      • Innovation for Emerging and Developing Economies
      • Innovation for Organizations
      • Research, Technology, and Innovation Policy
      • Technology Acceleration
    • Military Support
      • Military Behavioral Health
      • Military Health and Human Performance
      • Military Sexual Assault, Harassment, and Domestic Violence Prevention
      • Wearable Sensor Technologies
      • Military Health System Transformation
      • North Carolina Center for Optimizing Military Performance

    Practice Areas

  • Services + Capabilities
    • Surveys and Data Collection
      • Survey Design
      • Instrument Development
      • Survey Methodologies
      • Data Collection
      • Establishment Surveys
      • Health Registries
      • Data Analysis and Reporting
      • Research Operations Center
    • Statistics and Data Science
      • Survey Statistics
      • Environmental Statistics
      • Coordinating Centers for Multisite Studies
      • Analysis and Design of Complex Data
      • Biostatistics
      • RTI Center for Data Science
    • Evaluation, Assessment and Analysis
      • Evaluation Design and Execution
      • Advanced Qualitative, Quantitative, and Mixed Methods
      • Evaluation, Monitoring, and Assessment
      • Economic Analysis
      • Evaluating Communication Interventions and Campaigns
      • Evidence Synthesis for Policy and Practice
      • Risk Assessment and Prediction
    • Program Design and Implementation
      • Systems Strengthening and Scaling
      • Capacity Assessment and Building
      • Policy Reform Support
      • Curriculum and Teacher Professional Development
      • Interventions and Prevention Programs
      • Implementation Science
    • Digital Solutions for Social Impact
      • Human-Centered Design of Digital Solutions
      • Digital Product Development
      • Digital Communication Campaigns
      • Digital Data Analytics
    • Research Technologies
      • Survey Technologies
      • Data Management and Decision Support Systems
      • Geospatial Science, Technology, and Visualization
      • ICT for Limited-Resource Settings
      • Mobile Applications
      • Web Applications
      • Bioinformatics
      • Interactive Computing
    • Drug Discovery and Development
      • Medicinal Chemistry
      • Molecular Design and Cheminformatics
      • Behavioral Pharmacology
      • Drug Metabolism and Pharmacokinetics (DMPK)
      • In Vitro Pharmacology, Bioassay Development, and High-Throughput Screening (HTS)
      • Isotope Labeling
      • Regulatory Consulting and Support for Medical Products
    • Analytical Laboratory Sciences
      • Bioanalytical and Toxicology Research
      • Forensic Sciences
      • Physicochemical Characterizations
      • Metabolomics
      • Proficiency Testing and Reference Materials
      • Microbiology
      • Analytical Chemistry and Pharmaceutics
    • Engineering & Technology R&D
      • Biomedical Technologies
      • Decarbonization Sciences
      • Environmental Exposure & Protection
      • Materials & Environment
      • Sustainable Energy Solutions

    Services + Capabilities

  • Impact
    • Newsroom
    • Insights Blog
    • Events
    • Publications
    • RTI Press
      • About the RTI Press
      • Instructions for Authors
      • RTI Press Collections
    • Projects
    • Global Reach
      • Asia
      • Eastern Europe and Central Asia
      • RTI International India
      • Africa
      • Middle East and North Africa (MENA)
      • Latin America and the Caribbean (LAC)

    Impact

  • Experts
    • Our Experts
    • In-Depth With Our Experts
    • Related News
    • Experts In the Media
    • RTI Fellow Program

    Experts

  • Emerging Issues
    • COVID-19 Research
    • Artificial Intelligence
    • Global Health Security
    • Cannabis Research
    • Opioid Research
      • Interventions for Opioid Use Disorders
      • Preventing Opioid Misuse and Overdose
      • Treating Opioid Use Disorders
    • Policing Research and Investigative Science
    • Drone Research and Application
    • E-cigarette Research
    • Zika Virus Research
    • Integrated Governance

    Emerging Issues

  • COVID-19 Research + Response
  • Global Reach
  • Insights Blog
  • Newsroom
  • RTI Press
  • Publications
  • Partner With Us
  • Careers
  • Facebook IconTwitter IconInstagram IconYouTube IconLinkedin Icon
Impact

Warm Gas Desulfurization Process Technology

  • Home
  • Impact
  • Warm Gas Desulfurization Process Technology

Cleaning syngas at lower cost and higher efficiency for commercial applications

Traditionally, cleaning syngas has involved the need for substantial subambient gas cooling and complex heat recovery systems in an effort to curb the release of carbon dioxide, sulfur, and other contaminants into the atmosphere. Existing standalone conventional technologies such as Rectisol® and Selexol™ have proved to be too expensive or incapable of working in some key applications and suffer from inherent process inefficiencies and high capital and operating costs.

If the syngas stream could be cleaned at warm temperatures, then the overall process efficiency would improve substantially and capital and operating costs for subambient cooling and complex heat recovery systems could be significantly reduced or eliminated. However, the rigorous requirements to develop and demonstrate a viable warm syngas cleanup technology that has high removal capacity, is regenerable with low energy penalty, and is low cost have presented formidable barriers.

Our deep understanding of commercial and emerging gasification processes; expertise in fluidized and transport reactor systems; and capabilities in advanced materials development have allowed us to address the challenge of cleaning syngas.

Employing Unique, Differentiated Warm-Temperature, Solid Sorbent–Based Technology to Pursue Thermal Efficiency Improvements

Our warm gas desulfurization (WDP) technology was developed using a novel pressurized dual transport-bed reactor design and a proprietary attrition-resistant, high-capacity, regenerable solid sorbent. WDP is capable of removing up to 99.9 percent of the total sulfur contaminants directly from raw syngas at gasifier pressure and warm process temperature (250–650°C).

By cleaning high-sulfur gas streams at elevated temperatures, this technology can reduce the capital and operating costs of the entire gas cleanup block by as much as 50 percent or more compared to conventional cleanup technologies. The WDP technology also has the potential to integrate with most carbon capture technologies to meet syngas purities for ultra-clean power generation in a host of applications.

Driven by U.S. Department of Energy (DOE) goals to produce low-cost, high-efficiency clean energy, our team received a DOE award in 2010 to conduct pre-commercial scale testing of our WDP technology following over 3,000 hours of successful pilot testing on actual coal-based syngas at Eastman Chemical Company. Tampa Electric Company’s Polk 1 integrated gasification combined cycle (IGCC) was selected as the host site for this pre-commercial testing.

The pre-commercial test unit was sized to clean a 20 percent (50-MWe) slipstream of the total syngas from the Polk 1 gasifier (~60,000 Nm3/hour of syngas) and included our advanced water-gas-shift (WGS) technology, which reduced steam consumption by almost half at lower capital cost, and an activated amine process for 90+% overall carbon capture.

Improving Efficiency and Reducing Costs for Syngas Cleanup for Power Generation, Chemicals, and Fuels

We successfully completed more than 3,500 hours of pre-commercial scale testing at the Tampa Electric site in April 2016, replicating previous lab- and pilot-scale performance. Our WDP technology has now been demonstrated to achieve up to 99.9-percent removal of total sulfur from syngas at temperatures as high as 650°C and over a wide range of sulfur concentrations and pressures (pressure-independent performance).

The integration of WDP with a downstream activated amine carbon capture process allowed for further reduction of total sulfur in the syngas to sub-ppmv concentrations (as low as 0.1 ppmv, up to 99.999-percent total sulfur removal). Slip-stream testing of the final cleaned syngas using Fischer-Tropsch and methanol catalysts showed no significant catalyst deactivation from residual contaminants after several hundred hours of exposure.

Our WDP technology provides demonstrated advantages to conventional technology solutions, simultaneously offering lower capital costs (20–50 percent less); lower non-labor, non-feedstock operating costs (up to 30­–50 percent less); and higher overall process efficiencies (up to 10-percent more). By decoupling sulfur removal and carbon capture, this technology offers enhanced design flexibility and enables a capable and economic syngas cleanup option for essentially all applications.

Being able to replicate process performance through pre-commercial scale has now positioned WDP to dramatically impact the landscape of syngas cleanup. Now that the testing program has been concluded and critical data has been collected, we are teaming with industrial partners to offer the WDP technology and sorbent commercially.

Share

Clients

  • U.S. Department of Energy (DOE)

Practice Areas

Syngas Processing

Our Warm Gas Desulfurization Technology in Action

RTI’s Unique Breakthrough Warm Gas Cleanup Technology

Learn More

Announcement of Global Licensing and Cooperation Agreement (Chinese)

Announcement of Global Licensing and Cooperation Agreement (English)

Video: Our Warm Gas Desulfurization Technology in Action (Chinese)

Video: Our Warm Gas Desulfurization Technology in Action (English)

RTI Logo
Partner With Us
  • US Government
  • Commercial
  • Foundations & Associations
  • Multilateral Donors
  • Universities
  • Suppliers
Site
  • Privacy Policy
  • Security Policy
  • Site Map
  • Terms of Use
  • Accessibility
  • Contact Us
Contact Us
Facebook Icon Twitter Icon Instagram Icon YouTube Icon Linkedin Icon
delivering the promise of science
for global good
RTI Health Solutions RTI Innovation Advisors RTI Health Advance

© 2023 RTI International. RTI International is a trade name of Research Triangle Institute. RTI and the RTI logo are U.S. registered trademarks of Research Triangle Institute.