Skip to Main Content

RTI uses cookies to offer you the best experience online. By and clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.

Accept
RTI International
  • About
    • Office Locations
    • Executive Leadership
    • Corporate Governance
    • Partner with Us
      • U.S. Government
      • Clients and Funding Agencies
      • Industry and Commercial Clients
      • Foundations and Associations
      • Bilateral Agencies and Multilateral Banks
      • Universities and Academic Research Institutions
      • Suppliers and Small Businesses
    • Commitment to Quality
      • RTI's Client Listening Program
    • Ethics and Human Research Protection
    • Living Our Mission
    • Veteran Opportunities at RTI

    About

  • Practice Areas
    • Health
      • Public Health and Well-Being
      • Health Care Transformation
      • Behavioral Health
      • Health Behavior Change
      • Precision Medicine
      • RTI Health Solutions (RTI-HS)
      • RTI Center for Community Health Evaluation and Economics Research
      • Health Equity
    • Transformative Research Unit for Equity​
      • Equity Capacity Building Hub
      • Social and Economic Justice Research Collaborative
      • Narrative Research and Community Engagement Lab
    • Education and Workforce Development
      • Early Childhood
      • K-12 Education
      • Postsecondary Education
      • Career and Adult Education and Workforce Development
      • Education Policy, Systems, and Governance
      • Education Research Methodologies
      • Education Technologies
    • International Development
      • Energy for Development
      • Environment
      • Global Food Security, Agriculture, and Nutrition
      • Global Health
      • Governance
      • International Education
      • Monitoring, Evaluation, Research, Learning, and Adapting (MERLA)
      • Youth and Economic Opportunity
      • Building Resilience Against COVID-19 in Developing Countries
      • Water
    • Climate Change
      • Clean Energy Technology and Renewables
      • Climate Finance
      • Climate Justice and Equity
      • Climate Planning, Preparedness and Resilience
      • Climate Policy
      • Climate Vulnerability, Adaptation, and Mitigation
      • Economic Impacts of Climate Change
    • Water
      • Food-Energy-Water Nexus
      • Water Quality
      • Water Sector Governance
      • Urban Sanitation
      • Water Service Provider Strengthening
      • Water Resources Management
    • Energy Research
      • Carbon Capture and Utilization
      • Biomass Conversion
      • Natural Gas
      • Energy Efficiency
      • Industrial Water
      • Syngas Processing
    • Environmental Sciences
      • Air Quality
      • RTI Center for Water Resources
      • Urban Sustainability
      • Toxics
      • Climate Change
      • Building Resiliency in the FEW Nexus
      • Climate Change Sciences and Analysis
      • Environmental Policy
      • Environmental Justice
      • Sustainable Materials & Waste Management Solutions
    • Justice Research and Policy
      • RTI Center for Community Safety and Crime Prevention
      • RTI Center for Policing Research and Investigative Science
      • Child Well-Being and Family Strengthening
      • RTI Center for Forensic Sciences
    • Food Security and Agriculture
      • Market Systems Strengthening
      • Food Safety
      • Food and Nutrition
      • Global Food Security, Agriculture, and Nutrition
      • Climate-Smart Agriculture
      • Youth in Agriculture
      • Agricultural Innovation
      • Obesity Prevention
    • Innovation Ecosystems
      • Innovation Advising
      • Innovation for Economic Growth
      • Innovation for Emerging and Developing Economies
      • Innovation for Organizations
      • Research, Technology, and Innovation Policy
      • Technology Acceleration
    • Military Support
      • Military Behavioral Health
      • Military Health and Human Performance
      • Military Sexual Assault, Harassment, and Domestic Violence Prevention

    Practice Areas

  • Services + Capabilities
    • Surveys and Data Collection
      • Survey Design
      • Instrument Development
      • Survey Methodologies
      • Data Collection
      • Establishment Surveys
      • Health Registries
      • Data Analysis and Reporting
      • Research Operations Center
    • Statistics and Data Science
      • Survey Statistics
      • Environmental Statistics
      • Coordinating Centers for Multisite Studies
      • Analysis and Design of Complex Data
      • Biostatistics
      • RTI Center for Data Science
    • Evaluation, Assessment and Analysis
      • Evaluation Design and Execution
      • Advanced Qualitative, Quantitative, and Mixed Methods
      • Evaluation, Monitoring, and Assessment
      • Economic Analysis
      • Evaluating Communication Interventions and Campaigns
      • Evidence Synthesis for Policy and Practice
      • Risk Assessment and Prediction
    • Program Design and Implementation
      • Systems Strengthening and Scaling
      • Capacity Assessment and Building
      • Policy Reform Support
      • Curriculum and Teacher Professional Development
      • Interventions and Prevention Programs
      • Implementation Science
    • Digital Solutions for Social Impact
      • Human-Centered Design of Digital Solutions
      • Digital Product Development
      • Digital Communication Campaigns
      • Digital Data Analytics
    • Research Technologies
      • Survey Technologies
      • Data Management and Decision Support Systems
      • Geospatial Science, Technology, and Visualization
      • ICT for Limited-Resource Settings
      • Mobile Applications
      • Web Applications
      • Bioinformatics
    • Drug Discovery and Development
      • Medicinal Chemistry
      • Molecular Design and Cheminformatics
      • Behavioral Pharmacology
      • Drug Metabolism and Pharmacokinetics (DMPK)
      • In Vitro Pharmacology, Bioassay Development, and High-Throughput Screening (HTS)
      • Isotope Labeling
      • Regulatory Consulting and Support for Medical Products
    • Analytical Laboratory Sciences
      • Bioanalytical and Toxicology Research
      • Forensic Sciences
      • Physicochemical Characterizations
      • Metabolomics
      • Proficiency Testing and Reference Materials
      • Quality Assurance and Regulatory Compliance
      • Microbiology
      • Analytical Chemistry and Pharmaceutics
    • Engineering & Technology R&D
      • Biomedical Technologies
      • Decarbonization Sciences
      • Environmental Exposure & Protection
      • Materials & Environment
      • Sustainable Energy Solutions

    Services + Capabilities

  • Centers
    • RTI Center for Advanced Methods Development
    • RTI Center for Communication Science
      • Communication Research
      • Communication Design
      • Communication Delivery
    • RTI Center for Data Science
    • RTI Center for Education Services
      • Teaching and Learning
      • Education Leadership
      • Peer Learning Networks
      • Strategic Consulting
    • RTI Center for Forensic Sciences
    • RTI Center for Global Noncommunicable Diseases
      • Program Financing & Economics for NCDs
      • Health Systems Strengthening for NCDs
      • Communication Science and Behavior Change for NCDs
      • Implementation Science for NCDs
    • RTI Center for Newborn Screening, Ethics, and Disability Studies
      • Disability Studies
      • Ethics
      • Newborn Screening
    • RTI Center for Water Resources
      • Water Resources Sectors
      • Water Resources Services
      • Water Resources Tools
    • RTI Global Gender Center
    • North Carolina Center for Optimizing Military Performance
    • NCCU-RTI Center for Applied Research in Environmental Sciences
    • RTI Center for Climate Solutions

    Centers

  • Impact
    • Newsroom
    • Insights Blog
    • Events
    • Publications
    • RTI Press
      • About the RTI Press
      • Instructions for Authors
      • RTI Press Collections
    • Projects
    • Global Reach
      • Asia
      • Eastern Europe and Central Asia
      • RTI International India
      • Africa
      • Middle East and North Africa (MENA)
      • Latin America and the Caribbean (LAC)

    Impact

  • Experts
    • Our Experts
    • In-Depth With Our Experts
    • Related News
    • Experts In the Media
    • RTI Fellow Program

    Experts

  • Emerging Issues
    • COVID-19 Research
    • Artificial Intelligence
    • Global Health Security
    • Cannabis Research
    • Opioid Research
      • Interventions for Opioid Use Disorders
      • Preventing Opioid Misuse and Overdose
      • Treating Opioid Use Disorders
    • Policing Research and Investigative Science
    • Drone Research and Application
    • E-cigarette Research
    • Zika Virus Research
    • Integrated Governance

    Emerging Issues

  • COVID-19 Research + Response
  • Global Reach
  • Insights Blog
  • Newsroom
  • RTI Press
  • Publications
  • Partner With Us
  • Careers
  • Facebook IconTwitter IconInstagram IconYouTube IconLinkedin Icon
Impact

Monitoring and Forecasting Reservoir Levels in the Panama Canal

  • Home
  • Impact
  • Monitoring and Forecasting Reservoir Levels in the Panama Canal

Maintaining a delicate balance for one of the world’s most important shipping routes

Every time a ship traverses the Panama Canal, about 50 million gallons of water has to be poured into the Canal’s locks—the three-stage system that gradually raises ships for their 50-mile journey across the Panamanian isthmus. And where does this water come from? From Lake Gatún, a 164-square-mile body of water located 88 feet above sea level, and the 20-square-mile Lake Madden, located 250 feet above sea level. Both of these lakes were formed by the damming of the Chagres River early in the 20th century, when the Canal was built.

After ships have been raised to the height of the Canal, the fresh water in the locks is discharged into the ocean—the Pacific, on one end of the Canal, and the Atlantic, on the other end. Given that an average of 40 ships traverse the canal every day, that represents upwards of two billion gallons of water—which may sound like a lot, until you remember that this is the amount of water that would have been discharged naturally by the Chagres River before the Canal’s dams were built.

As you can imagine, the smooth functioning of the Panama Canal depends on close monitoring of the water levels in Lake Gatún and Lake Madden. In the case of Lake Gatun, if the water level drops below 79 feet, the canal must restrict its maximum allowable draft, meaning ships are required to pass with less cargo. The Panama Canal has traditionally dealt with such a situation seasonally in order to keep traffic flowing.

Riverside Technology, which RTI acquired in 2017, has been deeply involved in the day-to-day functioning of the Panama Canal’s reservoir system for the past 20 years. We create, maintain, update, and train employees in the use of the software and sensor systems that measure and anticipate the water levels in Lake Gatún and Lake Madden. This enables the Canal’s managers to more efficiently schedule the passage of maritime traffic.

Forecasting Water Levels in Gatún and Madden Lakes

In 1996, we began working with the Autoridad del Canal de Panamá (ACP), the agency that oversees the water levels of Lakes Gatun and Madden and provides municipal water and hydropower (via the Chagres dams) to Panamanian citizens. Specifically, we adapted the widely used National Weather Service (NWS) River Forecast System to create the Panama Canal River Forecast System (PANFCST), which predicts river flow and reservoir levels in Lakes Gatún and Madden.  

Under the system we implemented, Panama Canal engineers collect and analyze precipitation, streamflow, evaporation, and reservoir operation data, which are then used to calibrate hydrologic and hydraulic models within PANFCST to provide timely information about current and future reservoir inflows. With this information in hand, forecasters can make better decisions regarding reservoir operations and water conservation during the dry season, which lasts from December to April.

Our water simulation and monitoring operations don’t only impact the day-to-day functioning of the Canal. Millions of people in the Canal zone get their drinking water from Lakes Gatún and Madden, and Madden and Gatún Dams are also significant sources of hydroelectric power. We factor these non-Canal uses into our models, but the fact is that they represent a mere “drop in the bucket” compared to the amount of water needed to fill the Canal’s locks.

We have also performed other, closely related simulations in the course of our Panama Canal work. For example, we used the NWS dynamic routing program FLDWAV to analyze water releases from Madden Dam, simulating nine scenarios ranging from a relatively small breach of 50,000 cubic feet per second to a total dam break. The ACP uses the maps we generated to warn or evacuate threatened areas should conditions in the watershed require large water releases from Madden Dam.

In the course of implementing PANFCST, we developed a Joint Reservoir Operation model (RES-J) specifically for Gatún and Madden Lakes; this eventually became the de facto model used by the NWS for forecasting reservoir operations throughout the United States. The initial purpose of RES-J was to model the way Gatún and Madden dams operate in tandem. After it was implemented, RES-J became an excellent tool for examining the impacts of potential changes in the Canal’s reservoir and lock operations. Using RES-J, we worked with Canal engineers to investigate the impact of a third reservoir (and/or a second, higher dam) within the Gatún Lake watershed, the possibility of importing water to Gatún Lake from beyond the watershed zone, and the impact of large increases in the number of ship transits per day.

Inspiring the Expansion of the Panama Canal

In 2007, the Panamanian government announced that it was embarking on a major infrastructure project: the construction of two new locks on the Panama Canal, one each on the Atlantic and Pacific sides, to double the Canal’s capacity and allow for the passage of larger cargo ships. We were asked to provide detailed simulations to confirm that the Canal’s reservoirs had sufficient capacity for handling a large increase in shipping traffic—and on the basis of these simulations, ACP built the two additional locks, a $10 billion project that concluded in 2016.

Share

Clients

  • Autoridad de Canal de Panamá

Our Experts

Michael Kane Director, RTI Center for Water Resources

Practice Areas

Water

Countries

Panama
RTI Logo
Partner With Us
  • US Government
  • Commercial
  • Foundations & Associations
  • Multilateral Donors
  • Universities
  • Suppliers
Site
  • Privacy Policy
  • Security Policy
  • Site Map
  • Terms of Use
  • Accessibility
  • Contact Us
Contact Us
Facebook Icon Twitter Icon Instagram Icon YouTube Icon Linkedin Icon
delivering the promise of science
for global good
RTI Health Solutions RTI Innovation Advisors RTI Health Advance

© 2022 RTI International. RTI International is a trade name of Research Triangle Institute. RTI and the RTI logo are U.S. registered trademarks of Research Triangle Institute.