• Journal Article

Calculation of the electronic structure and spectra of model cytochrome P450 compound I

Citation

Harris, D., Loew, G., & Waskell, L. (2001). Calculation of the electronic structure and spectra of model cytochrome P450 compound I. Journal of Inorganic Biochemistry, 83(4), 309-318. DOI: 10.1016/S0162-0134(00)00177-X

Abstract

The electronic structure and spectra of the oxyferryl (Fe=O) compound I P450 heme species, the transient putative active intermediate of cytochrome P450s, have been calculated employing a full protoporphyrin IX heme model representation. The principal aim of this work was to compare the computed spectra of this species with the observed transient spectra attributed to it. Computations were made using both nonlocal density functional theory (DFT) and semiempirical INDO/CI methods to characterize the electronic structure of the compound I P450 species. Both methods resulted in a similar antiferromagnetic doublet as the ground state with a ferromagnetic quartet excited state partner, slightly higher in energy. The INDO/ROHF/CI semiempirical method was used to calculate the spectrum of the protoporphyrin IX P450 compound I heme species in its lowest energy antiferromagnetic doublet state at the DFT optimized geometry. As a reference, the spectrum of the ferric resting form of the protoporphyrin IX P450 heme species was also calculated. The computed shifts in the Soret and Q bands of compound I relative to the resting state were both in good agreement with the corresponding experimentally observed shifts in the transient spectra of cytochrome P450cam (Biochem. Biophys. Res. Commun. 201 (1994) 1464) and chloroperoxidase (Biochem. Biophys. Res. Commun. 94 (1980) 1123) both ascribed to their common compound I heme site. This consistency provides additional, independent support for the assignment of compound I as the origin of the reported observed transient spectra