• Article

Simulation model of the relationship between cesarean section rates and labor duration

Cesarean delivery is the most common major abdominal surgery in many parts of the world, and it accounts for nearly one-third of births in the United States. For a patient who requires a C-section, allowing prolonged labor is not recommended because of the increased risk of infection. However, for a patient who is capable of a successful vaginal delivery, performing an unnecessary C-section can have a substantial adverse impact on the patient's future health. We develop two stochastic simulation models of the delivery process for women in labor; and our objectives are (i) to represent the natural progression of labor and thereby gain insights concerning the duration of labor as it depends on the dilation state for induced, augmented, and spontaneous labors; and (ii) to evaluate the Friedman curve and other labor-progression rules, including their impact on the C-section rate and on the rates of maternal and fetal complications. To use a shifted lognormal distribution for modeling the duration of labor in each dilation state and for each type of labor, we formulate a percentile-matching procedure that requires three estimated quantiles of each distribution as reported in the literature. Based on results generated by both simulation models, we concluded that for singleton births by nulliparous women with no prior complications, labor duration longer than two hours (i.e., the time limit for labor arrest based on the Friedman curve) should be allowed in each dilation state; furthermore, the allowed labor duration should be a function of dilation state.

Citation

Hicklin, K. T., Ivy, J. S., Wilson, J. R., Cobb Payton, F., Viswanathan, M., & Myers, E. R. (2018). Simulation model of the relationship between cesarean section rates and labor duration. Health Care Management Science, 1–23. DOI: 10.1007/s10729-018-9449-3

DOI Links