We have grown SiGe/Si quantum dot superlattices (QDSLs) via low-pressure chemical vapor deposition (LPCVD) in order to analyze their performance as thin-film solar cells. Self-assembled SiGe quantum dots were included in the base region in order to increase absorption of near-infrared (NIR) photons and to increase short-circuit current density, Jsc. Rather than physically separate the epitaxial layers from the substrate prior to testing, a unique cell design was used to ensure that the epitaxial layers dominate the photocurrent from the cells. We found that open-circuit voltage Voc in our LPCVD-grown cells was comparable to that in earlier-reported cells grown by molecular beam epitaxy (MBE). The effect of both superlattice thickness and quantum dot density were also explored, and dislocations were found to sharply reduce Voc for thick superlattices with sufficiently-high dot density.
Analysis of SiGe/Si quantum dot superlattices grown by low-pressure chemical vapor deposition for thin solar cells
Lee, ML., Dezsi, G., & Venkatasubramanian, R. (2010). Analysis of SiGe/Si quantum dot superlattices grown by low-pressure chemical vapor deposition for thin solar cells. Thin Solid Films, 518(6, Suppl. 1), S76-S79. https://doi.org/10.1016/j.tsf.2009.10.060
Abstract
Publications Info
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.
Recent Publications
OCCASIONAL PAPER
OCCASIONAL PAPER
Culturally informed community engagement
Article
Does the relationship between alcohol retail environment and alcohol outcomes vary by depressive symptoms? Findings from a US Survey of Black, Hispanic and White drinkers
Article