RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Izawa, Y., Gu, Y.-H., Osada, T., Kanazawa, M., Hawkins, B. T., Koziol, J. A., Papayannopoulou, T., Spatz, M., & del Zoppo, G. J. (2018). β1-integrin-matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. Journal of Cerebral Blood Flow and Metabolism, 38(4), 641-658. https://doi.org/10.1177/0271678X17722108
Acutely following focal cerebral ischemia disruption of the microvessel blood-brain barrier allows transit of plasma proteins into the neuropil as edema formation that coincides with loss of microvessel endothelial beta 1-integrins. We extend previous findings to show that interference with endothelial beta 1-integrin-matrix adhesion by the monoclonal IgM Ha2/5 increases the permeability of primary cerebral microvascular endothelial cell monolayers through reorganization of claudin-5, occludin, and zonula occludens-1 (ZO-1) from inter-endothelial borders. Interference with beta 1-integrin-matrix adhesion initiates F-actin conformational changes that coincide with claudin-5 redistribution. beta 1-integrin-matrix interference simultaneously increases phosphorylation of myosin light chain (MLC), while inhibition of MLC kinase (MLCK) and Rho kinase (ROCK) abolishes the Ha2/5-dependent increased endothelial permeability by 6h after beta 1-integrin-matrix interference. These observations are supported by concordant observations in the cortex of a high-quality murine conditional beta 1-integrin deletion construct. Together they support the hypothesis that detachment of beta 1-integrins from abluminal matrix ligands increases vascular endothelial permeability through reorganization of tight junction (TJ) proteins via altered F-actin conformation, and indicate that the beta 1-integrin-MLC signaling pathway is engaged when beta 1-integrin detachment occurs. These findings provide a novel approach to the research and treatment of cerebral disorders where the breakdown of the blood-brain barrier accounts for their progression and complication.