Better coverage intervals for estimators from a complex sample survey
By Phillip S. Kott.
February 2020 Open Access Peer Reviewed
DOI: 10.3768/rtipress.2020.mr.0041.2002
Abstract
Coverage intervals for a parameter estimate computed using complex survey data are often constructed by assuming the parameter estimate has an asymptotically normal distribution and the measure of the estimator’s variance is roughly chi-squared. The size of the sample and the nature of the parameter being estimated render this conventional “Wald” methodology dubious in many applications. I developed a revised method of coverage-interval construction that “speeds up the asymptotics” by incorporating an estimated measure of skewness. I discuss how skewness-adjusted intervals can be computed for ratios, differences between domain means, and regression coefficients.
© 2025 RTI International. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
To contact an author or seek permission to use copyrighted content, contact our editorial team