The Cannabinoid CB1 Receptor (CB1R) is involved in a variety of physiological pathways and has long been considered a golden target for therapeutic manipulation. A large body of evidence in both animal and human studies suggests that CB1R antagonism is highly effective for the treatment of obesity, metabolic disorders and drug addiction. However, the first-in-class CB1R antagonist/inverse agonist, rimonabant, though demonstrating effectiveness for obesity treatment and smoking cessation, displays serious psychiatric side effects, including anxiety, depression and even suicidal ideation, resulting in its eventual withdrawal from the European market. Several strategies are currently being pursued to circumvent the mechanisms leading to these side effects by developing neutral antagonists, peripherally restricted ligands, and allosteric modulators. In this review, we describe the progress in the development of therapeutics targeting the CB1R in the last two decades.
Overcoming the psychiatric side effects of the cannabinoid CB1 receptor antagonists
Current approaches for therapeutics development
Nguyen, T., Thomas, B. F., & Zhang, Y. (2019). Overcoming the psychiatric side effects of the cannabinoid CB1 receptor antagonists: Current approaches for therapeutics development. Current Topics in Medicinal Chemistry, 19(16), 1418-1435. https://doi.org/10.2174/1568026619666190708164841
Abstract
Publications Info
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.
Meet the Experts
View All ExpertsRecent Publications
Article
What's in a name? A data-driven method to identify optimal psychotherapy classifications to advance treatment research on co-occurring PTSD and substance use disorders
Article
Grandi Byen-supporting child growth and development through integrated, responsive parenting, nutrition and hygiene
Article
Effects of additional context information in prescription drug information sheets on comprehension and risk and efficacy perceptions
Patent