Efficient regulation of nitrogen metabolism likely plays a role in the ability of fungi to exploit ecological niches. To learn about regulation of nitrogen metabolism in the rice blast pathogen Magnaporthe grisea, we undertook a genome-wide analysis of gene expression under nitrogen-limiting conditions. Five hundred and twenty genes showed increased transcript levels at 12 and 48 h after shifting the fungus to media lacking nitrate as a nitrogen source. Thirty-nine of these genes have putative functions in amino acid metabolism and uptake, and include the global nitrogen regulator in M. grisea, NUT1. Evaluation of seven nitrogen starvation-induced genes revealed that all were expressed during rice infection. Targeted gene replacement on one such gene, the vacuolar serine protease, SPM1, resulted in decreased sporulation and appressorial development as well as a greatly attenuated ability to cause disease. Data are discussed in the context of nitrogen metabolism under starvation conditions, as well as conditions potentially encountered during invasive growth in planta
Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea
Donofrio, NM., Oh, Y., Lundy, R., Pan, H., Brown, DE., Jeong, JS., Coughlan, S., Mitchell, TK., & Dean, RA. (2006). Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genetics and Biology, 43(9), 605-617.
Abstract
Publications Info
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.
Meet the Experts
View All ExpertsRecent Publications
Article
Rate of onset of dopamine transporter inhibitors assessed with intracranial self-stimulation and in vivo dopamine photometry in rats
Article
Personal exposure to PM2.5 in different microenvironments and activities for retired adults in two megacities, China
Article
Estimating global artisanal fishing fleet responses in an era of rapid climate and economic change
OCCASIONAL PAPER