D2-like dopamine receptors mediate functional changes via activation of inhibitory G proteins, including those that affect adenylate cyclase activity, and potassium and calcium channels. Although it is assumed that the binding of a drug to a single isoform of a D2-like receptor will cause similar changes in all receptor-mediated functions, it has been demonstrated in brain that the dopamine agonists dihydrexidine (DHX) andN-n-propyl-DHX are “functionally selective”. The current study explores the underlying mechanism using transfected MN9D cells and D2-producing anterior pituitary lactotrophs. Both dopamine and DHX inhibited adenylate cyclase activity in a concentration-dependent manner in both systems, effects blocked by D2, but not D1, antagonists. In the MN9D cells, quinpirole andR-(?)-N-propylnorapomorphine (NPA) also inhibited the K+-stimulated release of [3H]dopamine in a concentration-responsive, antagonist-reversible manner. Conversely, neither DHX, nor its analogs, inhibited K+-stimulated [3H]dopamine release, although they antagonized the effects of quinpirole.S-(+)-NPA actually had the reverse functional selectivity profile from DHX (i.e., it was a full agonist at D2L receptors coupled to inhibition of dopamine release, but a weak partial agonist at D2L receptor-mediated inhibition of adenylate cyclase). In lactotrophs, DHX had little intrinsic activity at D2 receptors coupled to G protein-coupled inwardly rectifying potassium channels, and actually antagonized the effects of dopamine at these D2receptors. Together, these findings provide compelling evidence for agonist-induced functional selectivity with the D2Lreceptor. Although the underlying molecular mechanism is controversial (e.g., “conformational induction” versus “drug-active state selection”), such data are irreconcilable with the widely held view that drugs have “intrinsic efficacy”.
Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs
Kilts, JD., Connery, HS., Gay, E., Lewis, MM., Lawler, CP., Oxford, GS., O'Malley, KL., Todd, RD., Blake, BL., Nichols, DE., & Mailman, RB. (2002). Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs. Journal of Pharmacology and Experimental Therapeutics, 301(3), 1179-1189. https://doi.org/10.1124/jpet.301.3.1179
Abstract
Publications Info
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.
Meet the Experts
View All ExpertsRecent Publications
Article
Multifaceted risk for non-suicidal self-injury only versus suicide attempt in a population-based cohort of adults
Article
Community overdose surveillance
Article
Epigenetic biomarkers for smoking cessation
Article