RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Water vapor sorption in hybrid pillared square grid materials
O'Nolan, D., Kumar, A., & Zaworotko, M. J. (2017). Water vapor sorption in hybrid pillared square grid materials. Journal of the American Chemical Society, 139(25), 8508-8513. https://doi.org/10.1021/jacs.7b01682
We report water vapor sorption studies on four primitive cubic, pcu, pillared square grid materials: SIFSIX-1-Cu, SIFSIX-2-Cu-i, SIFSIX-3-Ni, and SIFSIX-14-Cu-i. SIFSIX-1-Cu, SIFSIX-3-Ni, and SIFSIX-14-Cu-i were observed to exhibit negative water vapor adsorption at ca. 40-50% relative humidity (RH). The negative adsorption is attributed to a water-induced phase transformation from a porous pcu topology to nonporous sql and sql-c* topologies. Whereas the phase transformation of SIFSIX-1-Cu was found to be irreversible, SIFSIX-3-Ni could be regenerated by heating and can therefore be recycled. In contrast, SIFSIX-2-Cu-i, which is isostructural with SIFSIX-14-Cu-i, exhibited a type V isotherm and no phase change. SIFSIX-2-Cu-i was observed to retain both structure and gas sorption properties after prolonged exposure to heat and humidity. The hydrolytic stability of SIFSIX-2-Cu-i in comparison to its structural counterparts is attributed to structural features and therefore offers insight into the design of hydrolytically stable porous materials.
RTI shares its evidence-based research - through peer-reviewed publications and media - to ensure that it is accessible for others to build on, in line with our mission and scientific standards.