When calibration weighting is be used to adjust for unit nonresponse in a sample survey, the response/nonresponse mechanism is often assumed to be a function of a set of covariates, which we call “model variables.” These model variables usually also serve as the benchmark variables in the calibration equation. In principle, however, the model variables do not have to coincide with the benchmark variables. Since the model-variable values need only be known for the respondents, this allows the treatment of what is usually considered nonignorable nonresponse in the prediction approach to survey sampling. One can invoke either a quasi-randomization or prediction approach to justify calibration weighting as a means for adjusting for nonresponse. Both frameworks rely on unverifiable model assumptions, and both require large samples to produce nearly unbiased estimators even when those assumptions hold. We will explore these issues theoretically using a joint framework and with an empirical study.
Using calibration weighting to adjust for nonignorable unit nonresponse
Kott, P., & Chang, T. (2010). Using calibration weighting to adjust for nonignorable unit nonresponse. Journal of the American Statistical Association, 105(491), 1265-1275. https://doi.org/10.1198/jasa.2010.tm09016
Abstract
Publications Info
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.
Meet the Experts
View All ExpertsRecent Publications
Article
The daily association between affect and alcohol use: A meta-analysis of individual participant data
Article
Protection of forest ecosystems in the eastern United States from elevated atmospheric deposition of sulfur and nitrogen
Article
The use of patient experience feedback in rehabilitation quality improvement and codesign activities
Article