RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Watson, JG., Chen, L.-WA., Chow, JC., Doraiswamy, P., & Lowenthal, DH. (2008). Source apportionment: Findings from the U.S. Supersites Program. Journal of the Air and Waste Management Association, 58(2), 265-288. https://doi.org/10.3155/1047-3289.58.2.265
Receptor models are used to identify and quantify source contributions to particulate matter and volatile organic compounds based on measurements of many chemical components at receptor sites. These components are selected based on their consistent appearance in some source types and their absence in others. UNMIX, positive matrix factorization (PMF), and effective variance are different solutions to the chemical mass balance (CMB) receptor model equations and are implemented on available software. In their more general form, the CMB equations allow spatial, temporal, transport, and particle size profiles to be combined with chemical source profiles for improved source resolution. Although UNMIX and PMF do not use source profiles explicitly as input data, they still require measured profiles to justify their derived source factors. The U.S. Supersites Program provided advanced datasets to apply these CMB solutions in different urban areas. Still lacking are better characterization of source emissions, new methods to estimate profile changes between source and receptor, and systematic sensitivity tests of deviations from receptor model assumptions.