• Journal Article

Role of cytoskeletal proteins in cerebral cavernous malformation signaling pathways: A proteomic analysis

Citation

Baxter, S. S., Dibble, C. F., Byrd, W. C., Carlson, J., Mack, C. R., Saldarriaga, I., & Bencharit, S. (2014). Role of cytoskeletal proteins in cerebral cavernous malformation signaling pathways: A proteomic analysis. Molecular BioSystems, 10(7), 1881-1889. DOI: 10.1039/c3mb70199a

Abstract

Three genetic mutations were found to cause cerebral cavernous malformation (CCM), a vascular anomaly predisposing affected individuals to hemorrhagic stroke. These CCM proteins function together as a protein complex in the cell. Loss of expression of each CCM gene results in loss of in vitro endothelial tube formation. Label-free differential protein expression analysis using multidimensional liquid chromatography/ tandem mass spectrometry (2D-LC-MS/MS) was applied to explore the proteomic profile for loss of each CCM gene expression in mouse endothelial stem cells ( MEES) compared to mock shRNA and no shRNA control cell-lines. Differentially expressed proteins were identified ( p < 0.05). 120 proteins were differentially expressed among the cell-lines. Principal component analysis and cluster analysis show the effects of individual knockdown. In all knockdown cell-lines, altered expression of cytoskeletal proteins is the most common. While all CCM mutations result in similar pathology, different CCM mutations have their own distinct pathogenesis in cell signaling.