RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Patients diagnosed with glioblastoma multiforme (GBM) continue to face a dire prognosis. Developing accurate and efficient contouring methods is crucial, as they can significantly advance both clinical practice and research. This study evaluates the AI models developed by MRIMath (c) for GBM T1c and fluid attenuation inversion recovery (FLAIR) images by comparing their contours to those of three neuro-radiologists using a smart manual contouring platform. The mean overall S & oslash;rensen-Dice Similarity Coefficient metric score (DSC) for the post-contrast T1 (T1c) AI was 95%, with a 95% confidence interval (CI) of 93% to 96%, closely aligning with the radiologists' scores. For true positive T1c images, AI segmentation achieved a mean DSC of 81% compared to radiologists' ranging from 80% to 86%. Sensitivity and specificity for T1c AI were 91.6% and 97.5%, respectively. The FLAIR AI exhibited a mean DSC of 90% with a 95% CI interval of 87% to 92%, comparable to the radiologists' scores. It also achieved a mean DSC of 78% for true positive FLAIR slices versus radiologists' scores of 75% to 83% and recorded a median sensitivity and specificity of 92.1% and 96.1%, respectively. The T1C and FLAIR AI models produced mean Hausdorff distances (<5 mm), volume measurements, kappa scores, and Bland-Altman differences that align closely with those measured by radiologists. Moreover, the inter-user variability between radiologists using the smart manual contouring platform was under 5% for T1c and under 10% for FLAIR images. These results underscore the MRIMath (c) platform's low inter-user variability and the high accuracy of its T1c and FLAIR AI models.
RTI shares its evidence-based research - through peer-reviewed publications and media - to ensure that it is accessible for others to build on, in line with our mission and scientific standards.