RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Regulation of fetal cardiac and hepatic beta-adrenoceptors and adenylyl cyclase signaling
terbutaline effects
Auman, J. T., Seidler, F. J., & Slotkin, T. A. (2001). Regulation of fetal cardiac and hepatic beta-adrenoceptors and adenylyl cyclase signaling: terbutaline effects. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 281(4), R1079-89. https://doi.org/10.1152/ajpregu.2001.281.4.R1079
Terbutaline (Ter), a beta(2)-adrenergic agonist used in preterm labor, stimulates fetal beta-adrenoceptors (beta-ARs). We administered Ter to pregnant rats on gestational days 17-20 and examined beta-ARs and adenylyl cyclase (AC) signaling in heart and liver. Ter produced less downregulation of cardiac beta-ARs than in adults, despite a higher proportion of the beta(2)-subtype, and failed to elicit desensitization of the receptor-mediated AC response. AC stimulants acting at different points indicated an offsetting of homologous desensitization at the level of the beta-AR by heterologous sensitization at the level of AC: induction of total AC catalytic activity and a shift in the catalytic profile or AC isoform. In fetal liver, Ter produced downregulation of beta-ARs, in keeping with the predominance of the beta(2)-subtype; hepatic receptor downregulation was equivalent in fetus and adult. Nevertheless, there was still no desensitization of beta-AR-mediated AC responses and again AC was induced. Our results indicate that, unlike in the adult, fetal beta-AR signaling is not desensitized by beta-agonists and, in fact, displays heterologous sensitization, thus sustaining responses during parturition. At the same time, the inability to desensitize beta-AR AC responses may lead to disruption of cardiac, hepatic, or neural cell development as a consequence of tocolytic therapy with beta-agonists.
RTI shares its evidence-based research - through peer-reviewed publications and media - to ensure that it is accessible for others to build on, in line with our mission and scientific standards.