In the present study we evaluated the effects of agents anticipated to change NO levels on the secretion of cholecystokinin (CCK) from STC-1 cells. After a 15-min treatment with the nitric oxide (NO) generating agent sodium nitroprusside (SNP; 10 microM), a 24% inhibition in basal CCK release and an increase in cellular guanosine 3',5'-cyclic monophosphate (cGMP) levels were noted. By contrast, SNP (10 microM) had no effect on CCK release stimulated by L-phenylalanine (20 mM). Inhibition of NO synthase (NOS) with NG-nitro-L-arginine methyl ester (L-NAME) produced dose-dependent stimulation in CCK release. L-NAME (100-400 microM) also inhibited ATP-sensitive potassium (KATP) channels in cell-attached patches. Pretreatment of cells with disopyramide (200 microM), a KATP channel blocker, blocked L-NAME stimulation of CCK release. After inhibition of potassium channel activity by L-NAME, addition of the nonhydrolyzable cGMP analogue 8-bromo-cGMP (1-2 mM) reactivated potassium channels. NO-generating agents had no effect on channel activity in inside-out membrane patches. It is concluded that NO may serve as an important regulator of basal CCK release.
Regulation of cholecystokinin secretion in STC-1 cells by nitric oxide.
Mangel, AW., Scott, L., Prpic, V., & Liddle, RA. (1996). Regulation of cholecystokinin secretion in STC-1 cells by nitric oxide. American Journal of Physiology. Gastrointestinal and Liver Physiology, 271(4), G650-654.
Abstract
Publications Info
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.
Meet the Experts
View All ExpertsRecent Publications
Article
Spatiotemporal trends in three smoothed overdose death rates in US counties, 2012-2020
METHODS REPORT
Improving text classification with Boolean retrieval for rare categories
Article
COVID-19 diagnosis and SARS-CoV-2 strain identification by a rapid, multiplexed, point-of-care antibody microarray
Article