RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Reaction kinetics of 2‐((2‐aminoethyl) amino) ethanol in aqueous and non‐aqueous solutions using the stopped‐flow technique
Rayer, A. V., Henni, A., & Li, J. (2012). Reaction kinetics of 2‐((2‐aminoethyl) amino) ethanol in aqueous and non‐aqueous solutions using the stopped‐flow technique. Canadian Journal of Chemical Engineering, 91(3), 490-498. https://doi.org/10.1002/cjce.21690
Observed pseudo‐first‐order rate constants (ko) for the reaction between CO2 and 2‐((2‐aminoethyl) amino) ethanol (AEEA) were measured using the stopped‐flow technique in an aqueous system at 298, 303, 308 and 313 K, and in non‐aqueous systems of methanol and ethanol at 293, 298, 303 and 308 K. Alkanolamine concentrations ranged from 9.93 to 80.29 mol m−3 for the aqueous system, 29.99–88.3 mol m−3 for methanol and 44.17–99.28 mol m−3 for ethanol. Experimentally obtained rate constants were correlated with two mechanisms. For both the aqueous‐ and non‐aqueous‐AEEA systems, the zwitterion mechanism with a fast deprotonation step correlated the data well as assessed by the reported statistical analysis. As expected, the reaction rate of CO2 in the aqueous‐AEEA system was found to be much faster than in methanol or ethanol. Compared to other promising amines and diamines studied using the stopped‐flow apparatus, the pseudo‐first‐order reaction rate constants were found to obey the following order: PZ (cyclic‐diamine) > EDA (diamine) > AEEA (diamine) > 3‐AP (primary amine) > MEA (primary amine) > EEA (primary amine) > MO (cyclic‐amine). The reaction rate constant of CO2 in aqueous‐AEEA was double that in aqueous‐MEA, and the difference increased with an increase in concentration. All reaction orders were practically unity. With a higher capacity for carbon dioxide and a higher reaction rate, AEEA could have been a good substitute to MEA if not for its high thermal degradation. AEEA kinetic behaviour is still of interest as a degradation product of MEA.
RTI shares its evidence-based research - through peer-reviewed publications and media - to ensure that it is accessible for others to build on, in line with our mission and scientific standards.