• Journal Article

Pharmacodynamic mechanisms of monoclonal antibody-based antagonism of (+)-methamphetamine in rats

Citation

Byrnes-Blake, K. A., Laurenzana, E. M., Carroll, F., Abraham, P., Gentry, W. B., Landes, R. D., & Owens, S. M. (2003). Pharmacodynamic mechanisms of monoclonal antibody-based antagonism of (+)-methamphetamine in rats. European Journal of Pharmacology, 461(2-3), 119-128.

Abstract

Our studies examined pharmacokinetic mechanisms involved in high-affinity (K-d - 11 nM) monoclonal antibody-based antagonism of (+)-methamphetamine-induced locomotor effects. Male rats received (+)-methamphetamine (0.3, 1, or 3 mg/kg i.v.) followed 30 min later by saline or anti-(+)-methamphetamine monoclonal antibody. All groups received a constant dose of monoclonal antibody that was equimolar in binding sites to the body burden of a 1 mg/kg i.v. (+)-methamphetamine dose 30 min after administration. The monoclonal antibody antagonized locomotor effects due to 0.3 and 1 mg/kg (+)-methamphetamine. In contrast, monoclonal antibody treatment increased locomotor activity due to 3 mg/kg (+)-methamphetamine. We also investigated the serum and brain pharmacokinetics of (+)-methamphetamine without and with the monoclonal antibody. Rats received (+)-methamphetamine (1 mg/kg i.v.) followed by saline or monoclonal antibody treatment at 30 min. The monoclonal antibody significantly increased serum methamphetamine concentrations and significantly decreased brain methamphetamine concentrations. These data indicate that anti-(+)-methamphetamine monoclonal antibody-induced pharmacodynamics are complex, but are related to time-dependent changes in (+)-methamphetamine brain distribution. (C) 2003 Elsevier Science B.V. All rights reserved