RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Molecular genotype-phenotype correlation in ACTB- and ACTG1-related non-muscle actinopathies
NMA Consortium (2026). Molecular genotype-phenotype correlation in ACTB- and ACTG1-related non-muscle actinopathies. American Journal of Human Genetics. Advance online publication. https://doi.org/10.1016/j.ajhg.2025.12.007
Recent advances in Mendelian genomics reveal the importance of variant-level characterization of allelic disorders. Non-muscle actin isoforms, encoded by the genes ACTB and ACTG1, are the most abundant intracellular proteins, but historically, they are often regarded as merely being "housekeeping" molecules. Here, we illuminate the extraordinary clinical heterogeneity and complex pathobiology of genetic non-muscle actinopathies. To do this, we combine human genomics studies with molecular biology. Strikingly, variants in ACTB and ACTG1 isoforms generate at least eight distinct clinical disorders. A subset of disease-associated missense variants causes dysregulated actin polymerization-depolymerization and neuronal migration defects. In contrast, nonsense, frameshift, and missense variants enhancing protein degradation cause milder phenotypes or are benign. These results emphasize the essential functional aspects of the non-muscle actin isoforms. Critically, they additionally constitute a template for the personalized genetic variant-level-driven management of the pleiotropic allelic single-gene disorders.
RTI shares its evidence-based research - through peer-reviewed publications and media - to ensure that it is accessible for others to build on, in line with our mission and scientific standards.