RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Interactions between 2 '-fluoro-(carbamoyl-pyridinyl)deschloroepibatidine analogues and acetylcholine-binding protein inform on potent antagonist activity against nicotinic receptors
Bueno, R., Davis, S., Dawson, A., Ondachi, P. W., Carroll, F. I., & Hunter, W. N. (2022). Interactions between 2 '-fluoro-(carbamoyl-pyridinyl)deschloroepibatidine analogues and acetylcholine-binding protein inform on potent antagonist activity against nicotinic receptors. Acta Crystallographica Section D: Structural Biology, 78(Pt 3), 353-362. https://doi.org/10.1107/S2059798322000754
Low-nanomolar binding constants were recorded for a series of six 2'-fluoro-(carbamoylpyridinyl)deschloroepibatidine analogues with acetylcholine-binding protein (AChBP). The crystal structures of three complexes with AChBP reveal details of molecular recognition in the orthosteric binding site and imply how the other three ligands bind. Comparisons exploiting AChBP as a surrogate for alpha 4 beta 2 and alpha 7 nicotinic acetylcholine receptors (nAChRs) suggest that the key interactions are conserved. The ligands interact with the same residues as the archetypal nAChR agonist nicotine yet display greater affinity, thereby rationalizing their in vivo activity as potent antagonists of nicotine-induced antinociception. An oxyanion-binding site is formed on the periphery of the AChBP orthosteric site by Lys42, Asp94, Glu170 and Glu210. These residues are highly conserved in the human alpha 4, beta 2 and alpha 7 nAChR sequences. However, specific sequence differences are discussed that could contribute to nAChR subtype selectivity and in addition may represent a point of allosteric modulation. The ability to engage with this peripheral site may explain, in part, the function of a subset of ligands to act as agonists of alpha 7 nAChR.