RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Genome-wide schizophrenia variant at MIR137 does not impact white matter microstructure in healthy participants
Kelly, S., Morris, DW., Mothersill, O., Rose, E., Fahey, C., O'Brien, C., O'Hanlon, E., Gill, M., Corvin, AP., & Donohoe, G. (2014). Genome-wide schizophrenia variant at MIR137 does not impact white matter microstructure in healthy participants. Neuroscience Letters, 574, 6-10. https://doi.org/10.1016/j.neulet.2014.05.002
A single nucleotide polymorphism (SNP rs1625579) within the micro-RNA 137 (MIR137) gene recently achieved strong genome-wide association with schizophrenia (SZ). However, the mechanisms by which SZ risk may be mediated by this variant are unknown. As miRNAs have the potential to influence oligodendrocyte development, we investigated whether this SNP was associated with variability in white matter (WM) microstructure. Diffusion tensor imaging (DTI) was conducted on 123 healthy participants genotyped for rs1625579. The analysis consisted of whole-brain tract-based spatial statistics and atlas-based tractography analysis of six major WM tracts known to be affected in SZ - the inferior longitudinal fasciculus, the uncinate fasciculus, the inferior fronto-occipital fasciculus, the anterior thalamic radiation, the cingulum bundle and the corpus callosum. No significant differences in either whole-brain fractional anisotropy or mean diffusivity between MIR137 genotype groups were observed (p>0.05). Similarly, atlas-based tractography of particular tracts implicated in SZ failed to reveal any significant differences between MIR137 genotype groups on measures of WM connectivity (p>0.05). In the absence of WM effects comparable to those reported for other SZ associated genes, these data suggest that MIR137 alone may not confer variability in these WM measures and therefore may not act in isolation for any effects that the variant may have on WM microstructure in SZ samples