RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Defect Engineered Ruthenium MOFs as Versatile Hydrogenation Catalysts
Epp, K., Luz, I., Heinz, W. R., Rapeyko, A., Llabres i Xamena, F. X., & Fischer, R. A. (2020). Defect Engineered Ruthenium MOFs as Versatile Hydrogenation Catalysts. ChemCatChem, 12(6), 1720-1725. https://doi.org/10.1002/cctc.201902079
Ruthenium MOF [Ru-3(BTC)(2)Y-y] . G(g) (BTC=benzene-1,3,5-tricarboxylate; Y=counter ions=Cl-, OH-, OAc-; G=guest molecules=HOAc, H2O) is modified via a mixed-linker approach, using mixtures of BTC and pyridine-3,5-dicarboxylate (PYDC) linkers, triggering structural defects at the distinct Ru-2 paddlewheel (PW) nodes. This defect-engineering leads to enhanced catalytic properties due to the formation of partially reduced Ru-2-nodes. Application of a hydrogen pre-treatment protocol to the Ru-MOFs, leads to a further boost in catalytic activity. We study the benefits of (1) defect engineering and (2) hydrogen pre-treatment on the catalytic activity of Ru-MOFs in the Meerwein-Ponndorf-Verley reaction and the isomerization of allylic alcohols to saturated ketones. Simple solvent washing could not avoid catalyst deactivation during recycling for the latter reaction, while hydrogen treatment prior to each catalytic run proved to facilitate materials recyclability with constant activity over five runs.