RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Analysis of Ce- and Yb-Doped TAGS-85 Materials with Enhanced Thermoelectric Figure of Merit
Levin, EM., Cook, B., Harringa, JL., Bud'ko, SL., Venkatasubramanian, R., & Schmidt-Rohr, K. (2011). Analysis of Ce- and Yb-Doped TAGS-85 Materials with Enhanced Thermoelectric Figure of Merit. Advanced Materials for Optics and Electronics, 21(3), 441-447.
Doping of TAGS-85 with 1 at% Ce or Yb forms a dilute magnetic semiconductor system with non-interacting localized magnetic moments that obey the Curie law. X-ray diffraction patterns and slight broadening in Te-125 NMR, attributed to paramagnetic effects, suggest that Ce and Yb atoms are incorporated into the lattice. Te-125 NMR spin-lattice relaxation and Hall effect show similar hole concentrations of approximate to 10(21) cm(-3). At 700 K, the electric conductivity of the Ce- and Yb-doped samples is similar to that of neat TAGS-85, while the thermal conductivity and the Seebeck coefficient are larger by 6% and 16%, respectively. Possible mechanisms responsible for the observed increase in thermopower may include i) formation of resonance states near the Fermi level and ii) carrier scattering by lattice distortions and/or by paramagnetic ions. Due to the increase in the Seebeck coefficient up to 205 mu V K-1, the thermoelectric power factor of Ce- and Yb-doped samples reaches 36 mu W cm(-1) K-2, which is larger than that measured for neat TAGS-85, 27 mu W cm(-1) K-2. The increase in the Seebeck coefficient overcomes the increase in the thermal conductivity, resulting in a total increase of the figure of merit by approximate to 25% at 700 K compared to that observed for neat TAGS-85