RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Development of a quantitative lc-ms-ms assay for codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone and oxymorphone in neat oral fluid
Grabenauer, M., Moore, K. N., Bynum, N. D., White, R. M., Mitchell, J. M., Hayes, E. D., & Flegel, R. (2018). Development of a quantitative lc-ms-ms assay for codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone and oxymorphone in neat oral fluid. Journal of Analytical Toxicology, 42(6), 392-399. https://doi.org/10.1093/jat/bky021
Recent advances in analytical capabilities allowing for the identification and quantification of drugs and metabolites in small volumes at low concentrations have made oral fluid a viable matrix for drug testing. Oral fluid is an attractive matrix option due to its relative ease of collection, reduced privacy concerns for observed collections and difficulty to adulterate. The work presented here details the development and validation of a liquid chromatography tandem mass spectrometry (LC-MS-MS) method for the quantification of codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone and oxymorphone in neat oral fluid. The calibration range is 0.4-150 ng/mL for 6-acetylmorphine and 1.5-350 ng/mL for all other analytes. Within-run and between-run precision were <5% for all analytes except for hydrocodone, which had 6.2 % CV between runs. Matrix effects, while evident, could be controlled using matrix-matched controls and calibrators with deuterated internal standards. The assay was developed in accordance with the proposed mandatory guidelines for opioid confirmation in federally regulated workplace drug testing. The use of neat oral fluid, as opposed to a collection device, enables collection of a single sample that can be split into separate specimens.