
Attribute-Level Encryption
of Data in Public Android
Databases
Charles E. Loftis, Tennyson X. Chen, and
Jonathan M. Cirella

September 2013

RTI Press

ReseaRch RepoRt
occasional papeR

About the Authors
The authors work in RTI
International’s Research Computing
Division. Their main focus is the
National Survey of Drug Use and
Health (NSDUH) project. Charles E.
Loftis, MS, research analyst, is key
web, mobile, and database developer
on the NSDUH project.

Tennyson X. Chen, MS, is a senior
research analyst and software system
architect. For the NSDUH project,
he is a key system designer and
database manager.

A software developer and database
practitioner, Jonathan M. Cirella, BS,
designs and maintains application
databases for the NSDUH project.

This publication is part of the
RTI Research Report series.
Occasional Papers are scholarly
essays on policy, methods, or other
topics relevant to RTI areas of
research or technical focus.

RTI International
3040 Cornwallis Road
PO Box 12194
Research Triangle Park, NC
27709-2194 USA

Tel: +1.919.541.6000
Fax: +1.919.541.5985
E-mail: rtipress@rti.org
Web site: www.rti.org

RTI Press publication OP-0016-1309

This PDF document was made available from www.rti.org as a public service
of RTI International. More information about RTI Press can be found at
http://www.rti.org/rtipress.

RTI International is an independent, nonprofit research organization dedicated
to improving the human condition by turning knowledge into practice. The RTI
Press mission is to disseminate information about RTI research, analytic tools,
and technical expertise to a national and international audience. RTI Press
publications are peer-reviewed by at least two independent substantive experts
and one or more Press editors.

Suggested Citation

Loftis, C. E., Chen, T. X., & Cirella, J. M. (2013). Attribute-level encryption
of data in public Android databases (RTI Press publication OP-0016-1309).
Research Triangle Park, NC: RTI Press.

©2013 Research Triangle Institute. RTI International is a trade name of Research Triangle Institute.

All rights reserved. This report is protected by copyright. Credit must be provided to the author
and source of the document when the content is quoted. Neither the document nor partial or
entire reproductions may be sold without prior written permission from the publisher.

doi:10.3768/rtipress.2013.op.0016.1309 www.rti.org/rtipress

www.rti.org/rtipress
http://www.rti.org/rtipress
http:www.rti.org
http://dx.doi.org/10.3768/rtipress.2013.op.0016.1309

 Attribute-Level Encryption of Data in
Public Android Databases
Charles E. Loftis, Tennyson X. Chen, and
Jonathan M. Cirella

Abstract
Android mobile devices have become an attractive consumer product because of
their portability, high-definition screens, long battery life, intuitive user interface,
and ubiquitous competitive vendor pricing. The very feature that has helped with
the proliferation of the devices is also one of the most problematic: their portability
could result in theft, potentially allowing data to be compromised. For applications
deployed to these devices, data security requirements need to be incorporated in
the design process so these devices can be considered viable data collection tools.
Researchers at RTI have been working to secure data on Android mobile devices
so that selected information on the device can be encrypted and therefore difficult
to obtain illegitimately while still making confidential data easy to access. We have
developed software that will encrypt specific attributes of databases residing on
the internal secure digital card (SD card) of Android devices. The method we have
developed could also benefit other Android applications requiring secure storage
of data on globally readable and writable databases. In this occasional paper, we
discuss the technologies and methods used in our Android database encryption/
decryption implementation and their potential scalability to broader applications.

Contents

Introduction 2

Motivation 2
Data collection 2
Data transmission 2

Problem 3

Solution Evaluation 3

Proposed Approach 4

Results 6
example 6
potential problems 7

Field Test Observations 8

Related Work 8

Future Work 8
Move Database to private

storage 9
Database File-level encryption 9
cMVp 9

References 9

Acknowledgments inside back cover

2 Loftis et al., 2013 RTI Press

Introduction
Each year public, private, and government entities
spend significant resources collecting information
pertinent to their business practices. The information
collected is often critical in making policy, budget,
resource allocation, and purchasing decisions.
Obtaining and securing data are therefore essential
tasks for organizations relying on the information
collected.

Over the last few years, devices running Google’s
Android operating system (OS) have become
attractive to consumers and are increasingly used
by organizations to collect data. Some reports show
that Android has captured as much as one-half of the
smartphone market.1 However, as the popularity of
these portable handheld devices increases, the risk
that these devices may be lost or stolen also increases.
This risk poses a significant concern to entities that
need assurance that their data are securely stored and
safe from damaging compromise.

The Android OS provides security by “sandboxing”2

applications (apps). Each app is installed into its
own isolated directory, and permissions are assigned
such that no other app is allowed to access those
resources.3 Assuming that the OS and the associated
mechanisms for enforcing file access permissions
remain robust, this is an appealing security model.
However, Android smartphones and tablets have
historically been, and continue to be, relatively easy
to “root.” In other words, the OS can be quickly
hacked, giving the hacker administrative, or root,
privileges in Android and invalidating the built-in
security model for apps and their associated data
structures. Based on our observations and as noted
by Pocatilu,4 encryption is the only practical way
to protect sensitive data given the ease with which
devices can be rooted and security mechanisms
defeated.

Android provides two primary methods for
encrypting data: whole device encryption or file
encryption. Recent versions of Android (version
3.0+) provide a full device encryption option. This
option encrypts all data saved to internal, private
storage. Data stored in the private encrypted area
can only be decrypted by the OS. For example, a file

extracted from the encrypted internal storage will
be unreadable without decryption by the OS and
should therefore be safe from compromise. However,
a presentation at the DEF CON 2012 conference
outlined a method for defeating Android’s whole
device encryption.5

The second way data can be encrypted on Android,
regardless of where that data may reside (i.e.,
private file system or public secure digital [SD] card
memory), is to encrypt the target file itself. This
option requires the development or installation of
third-party solutions or algorithms. The devised
solution must be implemented, applied, and
maintained when updates (i.e., to third-party
solutions) are released.

Motivation

Data Collection
The research described in this paper was motivated
by work RTI International conducts on several large
nationwide field surveys on an ongoing basis. These
surveys typically gather responses to questions
of interest to social science researchers, related to
subjects such as education, drug use and abuse,
mental health, and sexually transmitted diseases
and associated risk behaviors. At any one time,
several surveys may be active in all 50 states, as well
as internationally, with operation around the clock,
365 days per year. RTI collects data from hundreds
of thousands of survey respondents annually. These
data are first collected and stored in Android devices
for future transmission back to RTI servers. Since the
databases underlying our survey apps often contain
sensitive information, confidentiality and security are
important considerations.

Data Transmission
Project protocols typically require that data collected
by interviewers be communicated back to RTI as soon
as possible using local resources. Interviewers often
collect data in rural and underdeveloped areas where
wireless Internet (Wi-Fi) connections and high-speed
Internet connections may not be available. Quite
often our interviewers have access to the Internet only
via dial-up modem connections, and Android devices
do not directly support this communication mode.

3 Attribute-Level Encryption of Data in Public Android Databases

Because Wi-Fi Internet access is not available to all
interviewers, they must tether the Android device
via a Universal Serial Bus (USB) cable to a project-
provided laptop and use the shared dial-up modem
connection from the laptop to transmit the data via
analog modem.

Enabling data transmission via a tethered laptop
provides multiple ways for in-field interviewers
to send data to home servers via various Internet
connections: dial-up, wireless, Ethernet, and 3G/4G.
The laptop is used to broker the communication,
so we can use any mode supported by the laptop
hardware and software.

Implementing the tethered data transmission system
requires that the database on the Android device
storing survey data be publicly (in terms of the
Android OS) accessible. Therefore, in this paper we
concentrate on the problem of encrypting SQLite6

databases on an Android device’s globally readable
and writeable internal storage secure digital (SD)
card. The same technology can easily be adopted for
other database formats.

SQLite was developed as an open source project to
store data in flat file database storage on the device.
It confirms to the transactional Structured Query
Language (SQL) standard, without the administration
complexity of hosting a SQL server application
instance. It is commonly used in the software
development industry to store data in non-volatile
memory data format.

Problem
Recent versions of Android provide an option for
encrypting files in internal storage; this includes data
stored in the root /data directory. Each app installed
on a device is provided its own subdirectory under
/data where it can store information. By default, the
entire /data directory is protected by the Android
OS and is not readable by external applications
and programs. However, in many situations it is
convenient, if not absolutely necessary, to store app
data in a location that can be accessed by multiple
apps, as well as by a USB-connected host. The data
transmission scenario described above is a prime
example. Because our data are stored in a public

storage area unprotected by the Android OS,
encryption of sensitive data is critical.

Android provides full native support for SQLite
databases7 but does not provide encryption support.
A few notable extensions providing encryption
support to SQLite exist: SQLite Encryption
Extension8 and SQLCipher9 are two of the most
popular. Both of these packages require a developer
to acquire source code and build libraries and/or pay
a fee for compiled libraries and/or pay for support in
executing the compilation. In the end, both packages
are initially free but require time and resources to
learn application programming interfaces (APIs)
and interact with third-party support staff. Further,
annual support costs, depending on the level of
service needed, range from $89910 to $75,00011 and
can burden project budgets. Practically speaking,
the need to pay annual support fees, plus the effort
required to integrate a third-party solution, can
prove to be cost prohibitive for small to medium app
development projects. Therefore, we sought a more
generic approach to encrypt our survey data. Our
approaches and methods are discussed in detail in the
following sections.

Solution Evaluation
Concluding that the existing full-device encryption
method and the third-party encryption libraries
do not suit our needs in protecting sensitive
data while providing flexible data access within
budget constraints, we explored the possibility of
implementing our own data encryption scheme and
developed a method for database attribute-level
encryption.

We offer a brief overview of the full-device encryption
architecture provided by later versions of the Google
Android mobile OS to highlight its advantages and
disadvantages. The semantics of the encryption
framework are based on dm-crypt (a Linux kernel
feature) and Android volume daemon (vold) invoking
encryption commands at the file system level. Initial
versions of the encryption are based on 128-bit
Advanced Encryption Standard (AES) with cipher
block chaining, encrypted salt-sector initialization
vector, and the Secure Hash Algorithm using a master

4 Loftis et al., 2013 RTI Press

key encrypted with 128-bit AES created from the
OpenSSL library.12

To use these strong encryption features, the mobile
device must have a lock screen to restrict access by
password, personal identification number, or gesture
or by using device owner facial recognition. The
lock screen restriction is used as a seed value for
the encryption modules. The Android OS level of
encryption framework provides adequate security,
preventing most unauthorized access if the device is
lost or stolen. The lock screen password seed value
is necessary to decrypt the data stored on the device.
In addition, a certain number of failed password
attempts can be specified such that once reached, all
sensitive data are wiped off of the device.

Drawbacks to Android’s full-device encryption
include the following: (1) the public internal memory
(i.e., SD card) does not get encrypted, (2) older
versions of the Android OS do not offer the full-
device encryption feature, and (3) communication
between the Android tablet and a USB-connected
host can become clumsy and difficult to implement.
Further, when the lock screen timeout period is set
to be too long (e.g., 30 minutes), the effectiveness of
the entire mechanism is compromised. A lost device
with an unlocked screen exposes potentially sensitive
data. This is hard to work around, because the screen
timeout is configurable by the user, and restrictions
on those settings are difficult or impossible to impose.

We also considered using third-party cryptographic
packages that use their own implementation of
SQLite encryption or proprietary database packages.
The main benefit of a third-party package is that it
abstracts the complexity of encryption away from the
programmer, reducing the amount of programming
development. However, third-party packages may
incur consulting costs that could burden project
budgets, and the development effort relies on the
availability of third-party support, which is especially
important when software problems occur. A desire
to minimize cost, coupled with a need to maximize
flexibility by minimizing the use of third-party
solutions, led us to search for other options. In
particular, we decided to examine methods that
would provide attribute-level encryption to obfuscate

specific database attributes by converting them from
plain text to encrypted, scrambled cipher text.

Our apps need to have tight control of the symmetric
key seed value because we also need to match the
Android app encryption with corresponding server-
side data decryption procedures. We observed that
it is faster to encrypt a small number of sensitive
attributes than to encrypt a whole database.

The attribute-level encryption method provides
several advantages. First, it provides strong
encryption that adequately satisfies Federal
Information Processing Standards (FIPS) publication
140 risk13 data security requirements. Depending on
the cryptographic package used, the attribute-level
encryption method can be tailored to meet FIPS 140
low (Level 1) or moderate (Level 2) data security
levels. Android’s native crypto package meets FIPS
140 low data security risk requirements. Second,
because we are developing the encryption classes/
methods, we control the source code and can adjust
it according to specific project security requirements.
Similarly, because we control the code, maintenance
and issue discovery/remediation is simpler than with
a third-party solution. Finally, this method does
not require license or support purchases, making it
attractive for long-running projects with dedicated
support staff (e.g., projects with dedicated staff but
not direct cost budget overhead). Because of these
advantages, we decided to adopt attribute-level
encryption for use in survey apps requiring strong
protection for databases stored in shared memory
areas within Android devices. In the next section, we
describe our chosen approach in more detail.

Proposed Approach
We first discuss the testing environment we used to
evaluate our attribute-level encryption method. The
environment consists of an Android device running
a locally installed native Android app, collecting
data and storing it into a SQLite database located
in the internal memory of the device’s SD card. A
separate Windows-based (x86) data transmission
program installed on a laptop interfaces with the
SQLite database via a USB connection to the Android
device. The following steps are required for the x86
data transmission program to proceed. First, the

5 Attribute-Level Encryption of Data in Public Android Databases

SQLite database file is retrieved from the Android
device using the Android Debug Bridge (ADB) pull
command. The database is stored in a temporary
location on the laptop’s hard drive memory. Next,
the x86 data transmission program synchronizes
the temporary database on the laptop to the server
database using RESTful web services and HTTPS
communication. Finally, the x86 data transmission
program pushes the temporary SQLite database back
to the Android device from the laptop using the ADB
push command. Our testing environment is shown in
Figure 1.

To prevent identification of any individual or location
being surveyed, we decided to encrypt any attribute
containing personally identifiable information (PII):
names, addresses, and phone numbers. Our analysis
revealed that a relatively small amount of these
types of personally identifiable attributes (less than
3 percent of the 200 or so attributes stored in each
project database) needed to be protected. Therefore,
we felt that encrypting names, addresses, and phone
numbers at the database attribute level was an ideal
solution.

Our approach requires the user to enter a shared
symmetric key passphrase and the app to create
or recover a private key (for each attribute value)
that is embedded in the final cipher string. Figure
2 demonstrates the encryption process. To encrypt
a clear text string, we first obtain a private key by
generating a random 13-digit number. Using the
Secure Hash Algorithm (SHA2), we encode the
private key. The Android device uses the hashed
private key as the initialization vector (IV) along
with the public symmetric key passphrase and
clear text as inputs into the 256-bit AES encryption
algorithm. It then converts the resulting cipher text
to a hexadecimal value, prefixed with the unhashed,
hex-encoded private key. The scrambled cipher text
is then stored by the app in the SQLite database
residing on the Android device’s internal public SD
card for future access. To decrypt the cipher text, the
app parses the encrypted text to discover and remove
the hex-encoded private key before decoding the
remainder of the cipher text.

Figure 1. Test environment configuration

Internet

SQL Server
Database

Windows Laptop

Data Transmission
Program (x86)

USB Connection
(ADB Push/Pull)

Read/
Write

Web Service
(SSL)

Android Tablet

Public Memory
(/SD card)

Survey
Application

SQLite
Database

6

Figure 3. Encrypted data sample

	

Loftis et al., 2013 RTI Press

Figure 2. Encryption process

Random

13-digit number
1234567890123

SHA2

AES-256, Hex
encoded + prefixes

Hashed private
key (IV)

Public Symmetric Key
MY_PUBLIC_KEY

Clear Text
123 My Street

SQLite
Database

Cipher String
B11F71FB04CB1F91CF4B
9225C7894C13C342260

SHA = Secure Hash Algorithm 2;

AES-256 = 256-bit Advanced Encryption Standard.

A server-side process decrypts cipher text received
during the transmission using the same public
symmetric key value and private key (recovered from
the cipher text) used during the encryption process.
Note that the padding type and encoding of the
clear string value must be matched for the data to
be decrypted properly by the transmission program.
Additionally, string attribute sizes of the client
SQLite database and SQL server database need to be
large enough to store the encrypted text. In the next
section, we discuss how well the database attribute
encryption worked and its limitations.

Results
To illustrate the result in a real-life app development,
we used an example in which each household
is a study case, and interviewers use Android
devices running version 3.2 (Honeycomb) of the
OS to display the household addresses to conduct
interviews. The results demonstrated that the method
works well.

Example
Initially, all study cases were stored on RTI’s central
database server. The street information for each
household was encrypted with the shared symmetric
key.

When an interviewer downloads a list of addresses
from the server, the household data are transmitted
and stored in the publically readable and writeable
SQLite database on the handheld device, as shown in
Figure 3.

Note that the content in the Street attribute is
encrypted. By transmitting and storing data in such a
manner, the household information is protected even
if the interviewer loses the handheld device.

Before access to the app is granted, the interviewer
must provide the symmetric key phrase used by the
server program to encrypt data. The app uses this key
phrase to retrieve the data from the SQLite database,
decrypting the street data and displaying the list of
households in the app, as shown in Figure 4.

Figure 3. Encrypted data sample

Case ID Street # Street City State Zip
XX10010013 110 616D918DF787020CC836205C7975F9E9 Cary XX 27511
XX10010015 300 AF6D27C81B91B53782107AA36D681D22 Cary XX 27511
XX10010017 304 AF6D27C81B91B53782107AA36D681D22 Cary XX 27511
XX10010025 5421 F22470396D17E34837394A76755C0BCC Cary XX 27511
XX10010033 202 52E751630AD19388E1A61838642F4FD5 Cary XX 27511
XX10010037 400 687D99DA7D56591627750BE899E3E299 Cary XX 27511
XX10010039 212 52E751630AD19388E1A61838642F4FD5 Cary XX 27511
YY09010001 124 667811CB2C372B4C1511397FB634F06D Mayberry YY 29378
ZZ10010002 102 F5F395RC7B02CA90D75351343F80780F Mt. Pilot ZZ 27958

7 Attribute-Level Encryption of Data in Public Android Databases

Prior to the field test, in-house security testing
was conducted attempting to decrypt the data.
All attempts failed without properly providing
the correct key phrase. After the field test, all data
were properly encrypted/decrypted with no major
problems reported by the field staff. No missing
or unrecoverable record data were logged as data
anomalies by our data processing programs. Our
experience with this app illustrates that the attribute-
level encryption and decryption method effectively
secures a subset of data in a SQLite database while
keeping out-of-pocket expenses low.

Figure 4. Decrypted street data

Case ID XX10010013
110 Pond Street, Cary, XX 27511

Case ID XX10010015
300 Gordo Street, Cary, XX 27511

Case ID XX10010017
304 Gordon Street, Cary, XX 27511

Case ID XX10010025
5421 Cornwall Road, Cary, XX 27511

Case ID XX10010033
202 Shirley Drive, Cary, XX 27511

Case ID XX10010037
400 Jefferson Drive, Cary, XX 27511

Case ID XX10010039
212 Shirley Drive, Cary, XX 27511

Case ID YY09010001
124 Example Dr, Mayberry, YY 29378

Case ID ZZ10010002
102 Practice Ln, Mt. Pilot, ZZ 27958

Potential Problems
Although this method is cost-effective and easy
to implement, we note its potential disadvantages,
including performance/scalability, inability to sort
raw data, unencrypted database schema, and key
knowledge.

First, there is a performance penalty. Each time
the app needs to display the addresses, rather than
displaying the raw content from the database,
the app must decrypt the street information for
each household. Our testing showed that each
decryption operation took ~22 milliseconds to
complete (whereas encryption operations took
~15 milliseconds to complete). When displaying
data for only one attribute needing decryption, as in
our testing, the decryption latency was negligible.
If multiple attribute values (scalability) need to be
decrypted for display, then the decryption latency
could become noticeable to the user.

Second, to store data in an encrypted fashion, we
lose some ability to manipulate the data with SQL’s
built-in functionality. For example, in Figure 5, the
app displays the household list in the order of Case
ID. If we want to see street names that contain the
string “Jones” or display the same list in the order of
street name, which is the encrypted attribute value,
we cannot use the SQL SELECT or the SQL ORDER
BY clause when retrieving data from the database
because the encrypted information will not meet
the search criteria and may not keep the same order
as the original data. Selecting or sorting encrypted
data requires the implementation of homomorphic
encryption algorithms,14 such as CryptDB,15 that are
not available in SQLite or on the Android platform.
Therefore, we would need to develop a scheme that
uses temporary data decryption and additional
attribute value indexing.

Third, the database schema is not encrypted.
Nefarious users could mine information from the
unencrypted attribute names to infer encrypted
values.

Fourth, end users need to retain the knowledge of
the key that is used to encrypt the data. They need
to provide it to the Android app for the program
to properly decrypt the content in the database.

8 Loftis et al., 2013 RTI Press

End users need to protect knowledge of the key to
maintain the security of the database.

While scalability limitations, the inability to select
or sort raw data, the unencrypted database schema
scenario, and key knowledge are the main drawbacks
for our approach of attribute-level encryption, the
simplicity of the design and implementation still
made this method the best option for our study data.

Field Test Observations
To further test our implementation, we executed a
field test. For the test, field interviewers used Android
devices running version 3.2 (Honeycomb) of the
OS to display the household addresses to conduct
interviews. Interview test cases were processed much
like a census: interviewers collected a roster of the
household members, including age, gender, race, and
military service. At the conclusion of the interview,
the interviewer collected information (name, phone
number) to allow for telephone verification of the
interview and interviewer quality control. During
the interview process, interviewers were allowed to
correct and/or add missed addresses.

Our interview app employed the encryption/
decryption process described in the Results section
to ensure that all sensitive data (e.g., address, name,
age) were secured. Address data was encrypted before
being transmitted to the field, and the app encrypted
all address changes and personal information
collected before writing them to the SQLite database.
At the RTI server end, a procedure ran hourly to
detect encrypted data sent from the Android devices
and to decrypt the data. Table 1 outlines the volume
of data secured using our attribute-level encryption
mechanism. Results of our test were positive with no
reports of issues related to the encryption/decryption
of sensitive data. Further, as expected, the app’s user
interface remained responsive; users did not report
degradation.

The success of the field test proved that the attribute-
level encryption method worked well and justifies
implementation in a full-scale study. Because the
algorithm is generic, it can be easily ported to other
similar data collection projects.

Table 1. Volume of encrypted data

Encrypted Attribute Count

Unique addresses sent to field (client 9,651
decryption)

Addresses modified (client encryption) 693

Addresses added (client encryption) 106

Roster names collected (client encryption) 411

Verification names collected (client encryption) 3,423

Phone numbers collected (client encryption) 3,267

Related Work
With regard to sorting encrypted data in an efficient
manner, theoretical research is being conducted on
homomorphic encryption.16 With homomorphic
encryption, the encrypted data are computed, and the
result set is determined from the decrypted data, as
if the data had not been initially ciphered. Although
the result set performance could be considered slow,14

the data could still be encrypted from unauthorized
access, and the SQL SELECT and ORDER BY clauses
could use data analysis. Further research to improve
the performance of the fully homomorphic encryption
mechanism will incorporate a CryptDB15 framework.
To increase the search speed efficiency of the
encrypted data, specific encryption algorithms could
be matched for a particular search operation. For
example, an order-preserving encryption practice17

could be matched to the SQL ORDER BY clause.
Thus, encrypted data could be quickly and efficiently
sorted without decryption. Most of the related work
mentioned would need further investigation to
implement in the SQLite database environment.

Future Work
We understand that attribute-level encryption of
globally readable and writable databases on Android
has some limitations. Some possible considerations for
future work include Android intent communication,
database file-level encryption, and verifying
compliance with the Cryptographic Module Validation
Program (CMVP). This list is a starting point to build
on for improving security for sensitive data.

 9 Attribute-Level Encryption of Data in Public Android Databases

Move Database to Private Storage
To provide an additional layer of security, the
database could be stored in the app’s private,
protected /data folder. To access data in this
scheme, other apps and the Windows (x86)-based
transmission program would be required to send
a message, or intent, to our app requesting access
to the data. Android intents are defined as hooks
to pass specific definitions for intercommunication
between apps and external programs. Data-layer
intents could be used to request and pass information
between our app, which is controlling the protected
SQLite database, and the x86 transmission program.
After receiving a data request intent, our app would
return the requested data as a stream, as a temporary
protected file, or by some other secure mechanism.
Moving the database to private storage would require
the x86 transmission program interface be retooled to
handle the app’s data delivery mechanism.

Database File-Level Encryption
Additional file-level encryption could be provided
to prevent database schema manipulation. Because
the whole database file would be encrypted, the
database schema would be difficult to obtain for
analysis. Protecting sensitive data with the database
file encryption method plus using the attribute-level
encryption would further enhance the security of the
database.

Cryptographic Module Validation Program
When dealing with sensitive data, researchers should
verify that their data collection device manufacturer
and Android OS’s cryptographic modules are
tested and validated under the National Institute of
Standards and Technology CMVP.18 It is important to
know the validation status to address project-specific
data security requirements. If the validation is listed
as revoked, then additional security and encryption
algorithms would be needed.

References

1.	 Yarow J, Terbush J. Android is totally blowing
away the competition [Internet]. Business
Insider; 2011 Nov 15. Available from: http://
articles.businessinsider.com/2011-11-15/
tech/30400572_1_smartphone-android-ios

2.	 Wikipedia.com: Sandbox (computer security)
[Internet]. [cited 2012 Aug 1]. Available
from: http://en.wikipedia.org/wiki/Sandbox_
(computer_security)

3.	 Enck W, McDaniel P. Understanding Android’s
security framework (tutorial). Presented at CCS
’08: Proceedings of the 15th ACM Conference
on Computer and Communications Security;
2008 October 27-31; Alexandria, VA. [Online].
Available from: http://siis.cse.psu.edu/android_
sec_tutorial.html

4.	 Pocatilu P. Android applications security
[Internet]. Informatica Economica; 2011 [cited
2013 March 11]. Available from: http://revistaie.
ase.ro/content/59/14%20-%20Pocatilu.pdf

5.	 Cannon T. Into the Droid—gaining access to
Android user data [Internet]. 2012 DEF CON
Conference, Las Vegas, NV: 2012 July 28.
Available from: https://viaForensics.com/mobile­
security-category/droid-gaining-access-android­
user-data.html

6.	 SQLite.org. SQLite software [Internet]. 2012 Feb.
Available from: http://www.sqlite.org

7.	 Developer.android.com. Storage options: using
databases [Internet]. [cited 2012 Aug 8]. Available
from: http://developer.android.com/guide/topics/
data/data-storage.html#db

8.	 Hwaci.com. The SQLite Encryption Extension
(SEE) [Internet]. 2012 Feb 1. Available from:
http://www.hwaci.com/sw/sqlite/see.html

9.	 SQLCipher.net. SQLCipher: full database
encryption for SQLite [Internet]. [cited 2012
Feb 1]. Available from http://sqlcipher.net/ or
http://sites.fastspring.com/zetetic/product/
sqlcipher

http://sqlcipher.net
http://www.hwaci.com/sw/sqlite/see.html
http://www.sqlite.org
http://articles.businessinsider.com/2011-11-15/tech/30400572_1_smartphone-android-ios
http://en.wikipedia.org/wiki/Sandbox_ (computer_security)
http://siis.cse.psu.edu/android_sec_tutorial.html
http://revistaie.ase.ro/content/59/14%20-%20Pocatilu.pdf
https://viaforensics.com/mobile-security-category/droid-gaining-access-android-user-data.html
http://developer.android.com/guide/topics/data/data-storage.html#db
http://sites.fastspring.com/zetetic/product/sqlcipher
http://www.SQLite.org
http://www.hwaci.com
http://www.SQLCipher.net
http://www.wikipedia.com
http://www.Developer.android.com

 10 Loftis et al., 2013 RTI Press

10. SQLCipher.net. Commercial support [Internet].
[cited 2013 Aug 27]. Available from http://
sqlcipher.net/support/

11. Hwaci.com. SQLite Consortium [Internet]. [cited
2013 Aug 27]. Available from http://www.hwaci.
com/sw/sqlite/member.html

12. Source.android.com. Notes on the implementa–
tion of encryption in Android 3.0 [Internet].
[cited 2012 Aug 1]. Available from: http://source.
android.com/devices/tech/encryption/android_
crypto_implementation.html

13. ITL.NIST.gov. Gaithersburg (MD): Security
requirements for cryptographic modules
[Internet]. 1994 Jan 11 [cited 2013 March 8].
Available from the NIST Information Technology
Laboratory website: http://www.itl.nist.gov/
fipspubs/fip140-1.htm

14. Cooney M. IBM touts encryption innovation;
new technology performs calculations on
encrypted data without decrypting it [Internet].
Computer World; 2009 June 25. Available
from http://www.computerworld.com/s/
article/9134823/IBM_touts_encryption_
innovation

15. Popa RA, Redfield CMS, Zeldovich N,
Balakrishnan H. CryptDB: protecting
confidentiality with encrypted query processing.
SOSP ’11, Proceedings of the 23rd ACM
Symposium on Operating Systems Principles;
2011 Oct 23-26; Cascais, Portugal. New York:
ACM; p. 85-100.

16. Gentry C. Fully homomorphic encryption using
ideal lattices. Proceedings of the 41st Annual
ACM Symposium on Theory of Computing; 2009
May 31–June 2; Bethesda, MD. New York: ACM;
p. 169-79. Available from http://dl.acm.org/
citation.cfm?id=1536440

17. Boldyreva A, Chenette N, Lee Y, O’Neill A. Order
preserving symmetric encryption. In Proceedings
of the 28th Annual International Conference on
the Theory and Applications of Cryptographic
Techniques (EUROCRYPT); 2009 April 26-30;
Cologne, Germany. New York: Springer; p. 224.

18. CSRC.NIST.gov. Gaithersburg, MD: National
Institute of Standards and Technology Computer
Security Resource Center. Module validation
lists [Internet]. [cited 2012 Aug]. Available from:
http://csrc.nist.gov/groups/STM/cmvp/validation.
html

http://sqlcipher.net/support/
http://www.hwaci.com/sw/sqlite/member.html
http://source.android.com/devices/tech/encryption/android_crypto_implementation.html
http://www.itl.nist.gov/fipspubs/fip140-1.htm
http://www.computerworld.com/s/article/9134823/IBM_touts_encryption_innovation
http://dl.acm.org/citation.cfm?id=1536440
http://csrc.nist.gov/groups/STM/cmvp/validation.html
http://www.itl.nist.gov
http://www.source.android.com
http://www.Csrc.nist.gov
http://www.sqlcipher.net
http://www.hwaci.com

Acknowledgments
Our thanks to the reviewing and editing provided by Martin Meyer, Craig
Hollingsworth, Nanthini Ganapathi, Charlotte Scheper, and Patricia Smith.

RTI International is an independent, nonprofit research organization dedicated
to improving the human condition by turning knowledge into practice. RTI
offers innovative research and technical solutions to governments and businesses
worldwide in the areas of health and pharmaceuticals, education and training,
surveys and statistics, advanced technology, international development,
economic and social policy, energy and the environment, and laboratory and
chemistry services.

The RTI Press complements traditional publication outlets by providing another
way for RTI researchers to disseminate the knowledge they generate. This PDF
document is offered as a public service of RTI International.

www.rti.org/rtipress RTI Press publication OP-0016-1309

www.rti.org/rtipress

	Attribute-Level Encryption of Data in Public Android Databases

	Attribute-Level Encryption of Data in Public Android Databases
	Charles E. Loftis, Tennyson X. Chen, and Jonathan Cirella
	Research Report - Occasional Paper
	Abstract

