Changes in Response Rate Standards and Reports of Response Rate over the Past Decade

Lisa R. Carley-Baxter, Craig A. Hill, David J. Roe, Susan E. Twiddy, and Rodney K. Baxter

RTI International
PO Box 12194
Research Triangle Park, NC 27709-2194
919.541.7141

21 December 2005
Changes in Response Rate Standards and Reports of Response Rate over the Past Decade

Data quality has long been a cornerstone of social science research: researchers are constantly and continually investigating methods to maximize data quality and minimize survey error. Survey error, of course, has many components and many causes. Error stemming from nonresponse has been receiving increased attention of late, in part because of the well-documented falling response rates occurring across the industry. Response rates are widely reported to have decreased for many types of surveys over the past decade, especially for random-digit-dial (RDD) surveys. While we can assess nonresponse error and its impact in multiple ways, certainly, response rate is the most well-known indicator of nonresponse error. As such, it is an important piece of information and has become—unfortunately or not—an overall indicator of data quality – interpreted by many as a shorthand way for labeling whether a particular survey is “good”, “scientific”, “valid” - or not.

One outgrowth of the aforementioned major decline of response rates (particularly problematic for RDD studies) is anxiety among scholars in the social science research community about the validity of analysis of data from surveys with low response rates; at what point, for example, are these surveys judged to be unacceptable as valid research due to their low response rates? And, not coincidentally, will journal editors increasingly reject manuscripts that are based on surveys with low response rates? Or, will major journals, instead, expand their publication standards to include multiple measures of nonresponse bias and data quality rather than focusing on response rates? Or, more simply, does it matter at all (yet) to journal editors in the social science, Health, and Statistics fields?

Some of our colleagues hold fast to the perception that it is harder to get studies published if they fail to achieve acceptable response rate standards. However, some of those colleagues readily admit that they do not have an accurate picture of what, if any, standards regarding data quality or survey error are imposed by journal editors in consideration of a manuscript reporting results based on data analysis of a survey. There is not, to our knowledge, much literature that addresses directly the question of standards used by journal editors for judging the quality of surveys used in manuscript submissions. Presser (1984, p. 105) examined how often survey data were used in social science publications and, as part of that work, reported that “…fewer than half the articles reported anything about sampling method [or] response rate…” Smith (1999), in a paper about the development of—or, more precisely, the attempts to develop—definitions and standards for nonresponse, also reviewed the top social science journals. He found that only 34 percent of the Survey Research, 29 percent of the Sociology, and 20 percent of the Political Science articles documented response rates.

In this paper, we report the results of analyses designed to prolong, at least, a discussion of the issue. First, we provide results from a survey of social science (e.g., Sociology, Psychology, and Political Science/Survey Research), Health, Education, Marketing Research, and Statistics research journal editors in which we asked about standards and considerations, both written and unwritten, in use when deciding whether or not to accept a manuscript for publication. Secondly, we examine results of a meta-analysis of survey-based articles in 10 social science, Health, and Statistics journals. We used meta-analysis in an attempt to uncover the range of reported response rates in these types of journals and the level of technical and operational detail available about the surveys used for analysis. Finally, we discuss these findings and offer some thoughts for the future.
Journal Editor Study Methods

For our study of journal editors, we built a sample consisting of 4-6 journals in each of 7 disciplines which are known to publish articles reporting on survey data. Disciplines surveyed included: Education, Health, Marketing Research, Political Science/Survey Research, Psychology, Sociology, and Statistics. A total of 33 journals were selected for inclusion in the study. Journals within each discipline were initially identified by experts in each field as those most likely to publish articles reporting on survey data. We then searched the Web of Science (which includes the Social Citation Index Expanded, Social Sciences Citation Index, and Arts & Humanities Citation Index) for “survey,” “response rate,” and “survey and response rate” to identify journals publishing articles with these key words. An analysis of the searches identified the number of articles for each journal with these key words. We then compared the number of hits to the list of expert-identified journals and retained the top 4-6 journals in each discipline.

We sampled editors-in-chief as well as associate editors or editorial board members. Because of their position on the “totem pole,” we hypothesized that associate editors may have different views on response rates standards than those espoused by editors-in-chief. We utilized on-line web pages for each journal to identify the editor population eligible for each journal. For each journal, we selected the editor-in-chief, and, if multiple editors were listed as “editor” or “co-editor,” we selected up to 2 for the sample. We then randomly selected, using a random number generator, up to 2 associate editors for each journal. A total of 109 editors were chosen for inclusion in the sample including 42 editors-in-chief and 67 associate editors.1

Table 1 displays the number of journals selected by discipline along with sample size, number of respondents, and response rate. We selected 6 journals each in the Political Science/Survey Research and Psychology fields, 5 in the Health field, and 4 each in the Education, Marketing Research, Sociology, and Statistics fields. Our overall eligible sample size was 91; in the end, 39 sample members responded to the survey for an overall response rate of 42.8 percent (AAPOR 1). Editors-in-chief responded at a higher rate (52.8 percent) compared to associate editors (36.6 percent).

We compiled names, affiliation, and contact information (including address, telephone number, and e-mail address) for all sample members using on-line web pages for each journal, as well as web pages of their affiliated agencies/universities. Since we were able to identify an e-mail address for the vast majority (99 percent) of sample members, e-mail was chosen as the primary means of contact for sample members.

In mid-October 2005, sample members were sent an e-mail describing the study, providing the URL for the web survey, along with their username and password. This was followed by a hard copy mailing of the questionnaire along with the lead letter a few days later. A reminder was sent via e-mail to sample members approximately 2 weeks later as well as a hard copy postcard, followed by a final survey request approximately one week later via e-mail. The web site remained open for sample members to participate for 6 weeks. Of the 39 completed surveys returned, 24 (62 percent) were completed via the web and 15 (38 percent) on hard copy.

1 After initial survey requests were distributed to sample members, 3 journals were replaced due to reports from sample members of the journal not publishing articles using survey data. We replaced these journals with journals identified next on the list from Web of Science based on our key word search. Two editors-in-chief and three associate editors were replaced during the data collection after we were notified that our initial selection was no longer the editor or associate editor for the selected journal.
Table 1. Sample information and response rate by discipline.

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Number of Eligible Journals</th>
<th>Initial Eligible Sample Size</th>
<th>Number of Respondents</th>
<th>Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>45.4</td>
</tr>
<tr>
<td>Health</td>
<td>5</td>
<td>15</td>
<td>4</td>
<td>26.7</td>
</tr>
<tr>
<td>Marketing Research</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>33.3</td>
</tr>
<tr>
<td>Political Science/Survey Research</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>57.1</td>
</tr>
<tr>
<td>Psychology</td>
<td>6</td>
<td>17</td>
<td>4</td>
<td>23.5</td>
</tr>
<tr>
<td>Sociology</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>45.4</td>
</tr>
<tr>
<td>Statistics</td>
<td>4</td>
<td>11</td>
<td>9</td>
<td>81.8</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>91</td>
<td>39</td>
<td>42.9</td>
</tr>
</tbody>
</table>

Journal Editor Study Results

One-half of all respondents reported that their journal receives 250 submissions or less each year for publication consideration, while 25 percent cited 251-500 submissions received, 10 percent cited 501-750 submissions received, and 15 percent cited 751 submissions or more (see Exhibit 1). Responses from editors-in-chief (editors) and associate editors (associates) differed more at the upper ranges of submissions, with associates providing lower estimates for mid-range values (501-750) and higher estimates for high-range values (751 or more).

Respondents from Health journals were more likely to report a higher number of submissions than were other disciplines, while respondents from Statistics and Marketing Research journals were more likely to report fewer submissions than were other disciplines.

Associates tended to under estimate the number of submissions sent out for peer review compared to editors; however, just over 45 percent of all respondents indicated that 90 percent or more of submissions are sent out for peer review (see Exhibit 2). All of the Health journal respondents reported that 75 percent or fewer of submissions were sent out for peer review, while Psychology, Political Science/Survey Research, and Education journal respondents all reported that at least 50 percent of submissions were sent out for peer review.
Exhibit 1. Number of manuscripts submitted each year overall and by editor type.

Exhibit 2. Submissions sent out for peer review overall and by editor type.

Overall, just fewer than 30 percent of respondents indicated that less than 10 percent of all manuscript submissions were accepted (Exhibit 3), while 63 percent indicated 10 to 25 percent were accepted, and 8 percent said 26 to 50 percent were accepted. Responses by editors and associates were quite similar with associates slightly more likely to indicate that their journal accepted more submissions (26 to 50 percent). Over half of all Sociology, Health, and Political Science/Survey Research journal respondents reported that less than 10 percent of submissions are accepted for publication, while Statistics and Psychology journal respondents were the only ones to indicate that between 26 and 50 percent of all submissions were accepted for publication.
Exhibit 3. Submissions accepted for publication overall and by editor type.

Exhibit 4 shows that approximately 70 percent of all respondents indicated that less than half of the submissions to their journal presented survey data, with most respondents indicating that 26 to 50 percent of submissions presented survey data. Editors were more likely to indicate a higher percentage of submissions present survey data than were associates. Respondents from Statistics, Health, Psychology, and Political Science/Survey Research journals were more likely to report that 25 percent or fewer of submissions to their journal present survey data.

Exhibit 4. Submissions that present survey data overall and by editor type.

All respondents indicated that less than 51 percent of all submissions that present survey data are accepted. Approximately 30 percent noted that less than 10 percent were accepted, 61 percent indicated that 10 to 25 percent were accepted, and only 9 percent indicated that 26 to 50 percent were accepted (see Exhibit 5). Very few differences were observed between editors and associates on this question; however, associates were slightly more likely to indicate that between 26 and 50 percent of submissions that present survey data are accepted. Statistics
and Health were the only disciplines that reported that 26 to 50 percent of submissions that present survey data are accepted with all other disciplines (Psychology, Political Science/Survey Research, Education, Sociology, and Marketing Research) reporting that 25 percent or less of submissions that present survey data are accepted for publication.

Exhibit 5. Submissions that present survey data accepted overall and by editor type.

Exhibit 6 shows that nearly all (97 percent) respondents indicated that their journal does not limit the number of publications which present survey data. While no editors said yes to this question, 5 percent of associates said their journal limits the number of publications which present survey data. Respondents from Education journals were the only respondents to report that their journal limited the number of publications which present survey data.

Exhibit 6. Limitations on number of publications which present survey data overall and by editor type.

Just under 90 percent of respondents indicated that response rate is either somewhat or very important in publication decisions for articles that present survey data, while eight percent indicated it is not very important, and only three percent indicated it is not at all important (see
Interestingly, while the overall percentage of editors and associates who indicated that response rate is either somewhat or very important in publication decisions was similar, associates were more likely to rate response rate as very important in their publication decisions than were editors. Respondents from Statistics journals (11 percent) were the only ones to report that response rates were not at all important in publication decisions; and between 14 and 25 percent of Health journal respondents (25 percent), Psychology respondents (17 percent), and Political Science/Survey Research respondents (14 percent) reported that response rates were not very important in publication decisions.

Exhibit 7. Importance of response rate in publication decision overall and by editor type.

Exhibit 8 shows that all respondents indicated that their journal does not have written standards for response rates that articles citing survey data must meet; however, 13 percent of all respondents indicated that their journal does have unwritten standards or “rules of thumb” for minimally acceptable response rates. Approximately 17 percent of editors indicated unwritten standards for response rate exist for their journal compared with 10 percent of associates. When asked to describe the unwritten standards, one mentioned response rates of at least 30 percent while two others mentioned response rates of 70 percent. One respondent mentioned the importance of non-response analysis for lower response rates, and another mentioned that the unwritten standards depend on the individual survey characteristics (population, methods, etc).

One-half of Health journal respondents reported that their journals have unwritten standards for minimally acceptable response rates, while 20 percent each of Education and Sociology respondents, and 13 percent of Political Science/Survey Research respondents reported unwritten response rate standards.

Overall, three percent of respondents indicated that submissions are rejected primarily due to low response rates most of the time, while 69 percent indicated this occurred some of the time, and 29 percent indicated submissions were never rejected primarily due to low response rate (see Exhibit 9). Editors and associates were fairly similar in their responses to this question with editors being slightly more likely to indicate submissions were rejected primarily due to low response most of the time than were associates. Approximately one-fourth of Education journal respondents reported that submissions were always rejected primarily due to low response
rates compared to Political Science/Survey Research (57 percent), Marketing Research (50 percent), Statistics (38 percent) Sociology (25 percent), and Psychology (17 percent) respondents reporting that submissions were never rejected primarily due to low response rate.

Exhibit 8. Response rate standards overall and by editor type.

Exhibit 9. Submissions rejected primarily due to low response rate overall and by editor type.

Exhibit 10 shows that 75 percent of respondents indicated that less than 25 percent of rejected submissions present survey data, 14 percent said 26 to 50 percent of rejected submissions presented survey data, followed by 4 percent choosing 50 to 75 percent and 8 percent choosing more than 75 percent. Associates were more likely to indicate that fewer (less than 25 percent) rejected submissions present survey data while editors were more likely to indicate that a higher percentage (more than 75 percent) of rejected submissions present survey data.
All Statistics, Political Science/Survey Research, and Sociology journal respondents reported that less than 25 percent of rejected submissions present survey data. Conversely, 25 percent of Psychology journal respondents reported that 75 percent or more of rejected submissions presented survey data, and one-half of Education journal respondents reported that more than 50 percent of rejected submissions presented survey data.

Exhibit 10. Rejected submissions present survey data overall and by editor type.

Approximately 97 percent of all respondents indicated that response rate standards applied to submissions for their journal have not changed in the past 10 years (see Exhibit 11). Editors were slightly more likely than associates to indicate that response rate standards had changed with regard to submissions to their journal over the past 10 years. One editor noted that their journal now requires reporting of response rate according to AAPOR standard definitions, and another indicated that their understanding of the impact of non-response on survey estimates has changed over the past 10 years and they are more interested in non-response error than response rate alone. Political Science/Survey Research respondents (14 percent) were the only ones to report that response rate standards have changed for their journal over the past 10 years.

Respondents were also asked to list other measures of survey quality that factor into publication recommendations, and then rate the importance of these factors compared to response rate. We grouped the measures listed into 10 categories:

- sampling including design, plan, technique
- questionnaire design including measurement design and innovative design
- representativeness, including reliability, response rate, and generalizability
- theoretical framework
- policy implications including importance and timeliness of the research
- non-response including missing data and bias
- sponsorship including data collection organization and author
- relevance to the organization, journal, or readership
- data collection methods and analysis, and
- other.
Exhibit 11. Changes in response rate standards over the past 10 years overall and by editor type.

Exhibit 12 shows that sampling (22 percent), questionnaire design (20 percent), methods (18 percent), and representativeness (14 percent) were the four most cited measures of quality considered in publication decisions other than response rate. Associate editors were slightly more likely to cite sampling and questionnaire design and methods more often than editors; however, editors were more likely than associates to cite representativeness as a factor in publication decisions.

Exhibit 12. Measures of survey quality other than response rate used in publication decisions.

Respondents were also asked what factors other than the previously cited measures of survey quality and response rate were used in their publication decisions. Exhibit 13 shows that methods (36 percent), policy implications/importance (19 percent), and relevance (11 percent) were the most cited factors other than survey quality and response rate used in publication decisions. Editors were more likely to cite methods than associates; and associates were more likely to cite policy implications and relevance than editors.
The last question in the survey asked respondents to give us any other thoughts or comments related to the importance of response rates when publishing submissions. Answers from 11 respondents were directly relevant to the question asked and they centered around:

- the need to evaluate non-response bias and total survey error (n=5)
- the need to evaluate response rate and other factors of survey design (n=2)
- leave evaluation up to reviewer (n=1),
- specific response rates (50 percent or 10 percent) (n=2), and
- response rates are deceptive, in part because of how they are calculated and lack of clarity in how rate is calculated (n=1).

Meta-analysis Methods

For the second part of our study, we designed a multi-tiered meta-analysis in an effort to collect observations on changes in reported RDD response rates over time. We initially analyzed reported response rates from July 2000 to June 2005 in the top two journals in Health, Sociology, Psychology, Political Science/Survey Research, and Statistics which are known to publish articles reporting on survey data. The next phase of this research will expand the meta-analysis to include all 7 disciplines and all 33 journals used in the Journal Editors Study and will cover articles for the past 10 years (back to 1995).

The current meta-analysis includes a total of 152 published articles which contained 212 data sets. Articles containing multiple data sets were given multiple data points, so that all individually reported results were coded. In some exceptional cases, steps had to be taken to decipher data points. For example, if multiple data sets were reported in a single article but only

2 While the Journal Editors Study sampled editors from 7 disciplines, due to time constraints we have initially included only 5 disciplines in the meta-analysis. These 5 disciplines were chosen because of the higher number of articles cited using our search criteria in our initial journal identification.
ranges were reported for response rates or other statistics, a median value was calculated for the statistic.

Table 2. Number of articles by discipline.

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Number of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td>82</td>
</tr>
<tr>
<td>Political Science/Survey Research</td>
<td>47</td>
</tr>
<tr>
<td>Sociology/Psychology(^3)</td>
<td>23</td>
</tr>
<tr>
<td>Statistics</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>152</td>
</tr>
</tbody>
</table>

Note that we found no published papers in Statistics journals during the period 2000-2005 that were based on RDD telephone surveys. We also combined responses from Psychology and Sociology into one category due to the low number of responses in each individual discipline. During our review, we coded the following fields for each article (as available): starting sample size, response rate, response rate calculation method (CASRO, AAPOR\(^1\), etc.), cooperation rate and method of calculation, additional data collection modes, geographic location of sample, length of field period, use of lead letters and/or incentives, refusal conversion steps and refusal conversion rates, if presented.

Meta-analysis results

First, we were interested to know if authors would include starting sample size, since the accuracy of any reported response rate calculation is difficult to determine without the “denominator.” Overall, 87 percent of all survey data presented in the reviewed publications did not include the starting sample size for the surveys. However, Exhibit 14 shows that the Psychology/Sociology data sets reported this information significantly more often than either the Health journals or the Political Science/Survey Research journals. Of the 13 percent of data sets that reported a starting sample size, the number ranged from 234 to 1,800,000.

Next, we looked to see how many completed interviews were reported for each dataset: 84 percent of the data sets cited in reviewed articles did, in fact, include this information and this proportion did not differ significantly across disciplines (Exhibit 15). The number of completed interviews for each data set ranged from 72 to 434,121 (mean = 13,392; median = 1,409). Thirty-three data sets (16 percent) reviewed did not include the number of completed interviews.

\(^3\) Ten articles from Psychology and 13 from Sociology.
Exhibit 14. Reporting of percent of data sets starting sample size by journal type.

Exhibit 15. Percent of data sets reporting number of completed interviews by journal type.

Response rate. Exhibit 16 shows that 75 percent of the data sets reported in the reviewed articles did, at least, mention a response rate. The Political Science/Survey Research journals had the highest proportion of data sets reporting a response rate: 83 percent. By contrast, only 70 percent of the data sets appearing in the Health journals reported a response rate. These reported response rates ranged from 16 percent to 98 percent (mean = 59.5 percent; median = 62 percent), as shown in Table 3.

Interestingly, journals that were less likely to report response rates tended to have higher response rates when they reported them; that is, the mean response rate reported in the Health journals was 68 percent (median = 69 percent), 59 percent (median = 63 percent) in the Psychology/Sociology articles, and 50 percent (median = 52 percent) in the Political Science/Survey Research data sets.
Exhibit 16. Reporting percent of data sets response rates by journal type.

Table 3. Mean response rates by journal type.

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Mean response rate</th>
<th>Median response rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Health</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>Psychology/Sociology</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td>Political Science/Survey Research</td>
<td>50</td>
<td>52</td>
</tr>
</tbody>
</table>

Response rate calculation. As noted above, only 75 percent of the data sets in the articles we examined reported, in some fashion, a response rate. Of that 75 percent, however, 64 percent did not specify the calculation method used to determine the response rate (see Exhibit 17). Of those that did include a description, 31 percent reported using either an AAPOR or CASRO method and 6 percent reported using a calculation method developed by the author(s). The Political Science/Survey Research journals were far more likely to use the AAPOR or CASRO standard calculations. Again, by contrast, the standard or method used to calculate the response rates was never provided in the Psychology and Sociology journals.

Overall, only 17 percent of the data sets reported the use of a cooperation rate (see Exhibit 18), ranging from 41 percent to 85 percent (mean = 69 percent; median = 73 percent); however, in 57 percent of these data sets, there was no mention of how the cooperation rate was calculated. 35 percent used either AAPOR or CASRO standards, while another eight percent used another means of calculation. The reporting of a cooperation rate was far more prevalent in the Health journals.
We also examined the geographic location or span of the surveys cited in the reviewed articles and found that 10 percent were locally-based data collections. Forty-six percent of the surveys were national, and an additional 44 percent were state-based. For the state-based surveys, 60 percent of the reviewed data did not mention the number of states included in the sample. For the other 40 percent, most only included data collection in one state (78 percent). The Health journals were most likely to include articles based on analysis of state-level survey data: 58 percent of the articles we reviewed used state-level data (see Exhibit 19).

Almost half of the reviewed data did not include the length of the field period (46 percent). Of those that did, the length of data collection ranged from half a month to 64 months, with a mean of six months and a median of four months (see Exhibit 20).
Overall, only eight percent of the reviewed data mentioned the use of incentives, and only 10 percent mentioned the use of refusal conversion methods. Those that reported using incentives typically reported using cash amounts between $2.00 and $20.00, with one reporting a token item giveaway and one reporting the use of a raffle for a gift certificate. Only one survey reported the refusal conversion rate, which was 28 percent. Roughly six percent of the data mentioned the use of lead letters.

Political Science/Survey Research journals were more likely than the Psychology/Sociology or Health journals to report using lead letters, incentives, or refusal conversion methods. The Political Science/Survey Research journals reported using incentives in 17 percent of the reviewed data, using lead letters in 13 percent of the reviewed data, and refusal conversion efforts in 24 percent of the reviewed data (see Exhibit 21).
Results over time. Since 2000, we observed a decline in the overall reporting of response rates in the academic journals we reviewed (Exhibit 22). Overall, across all the journals we examined, 91 percent of the data sets used an RDD survey as the basis for analysis reported a response rate in 2000 (including 100 percent of the datasets used in Health journal articles). However, by 2005, only 76 percent of such data sets provided a response rate. Notably, though, the Political Science/Survey Research journals have managed a significant uptick since 2002 and, by 2005, 100 percent of the data sets we reviewed reported at least some response rate information. But, cooperation rate reporting has also declined significantly, from a high of 55 percent in 2000 down to 10 percent in 2005. These numbers have fluctuated from year to year, but have remained consistently lower than what was reported in 2000.

Mean response rates. Over the past five years, the overall mean response rate for all reviewed data has fluctuated between a high of 68 percent in 2000 to a low of 48 percent in 2005. Overall, the trend appears to show response rates falling in the past five years. However, as shown in Exhibit 23, not all of the journal types have experienced a consistent decline. The
reviewed Health journals and Psychology/Sociology journals have seen some fluctuations, but have not declined as consistently or as precipitously as the Political Science/Survey Research journals, which have fallen from a high of 66 percent in 2000 to a mean of 35 percent in 2005.

Exhibit 23. Mean reported response rates by journal type over time.

Response rate calculations. Since 2000, journals have included more publications that mention the calculation method for both response rates and cooperation rates. As shown in Exhibit 24, in 2000 about 83 percent of the reviewed data did not include an explanation of the calculation method used, but by 2005 this had gone down to about 44 percent.

Exhibit 24. Percent of data sets reporting response rate calculation method over time.

Discussion

We set out to answer several questions about response rates in journal articles. Specifically, we wondered if there were, indeed, standards in use by journal editors for accepting or rejecting
potential publications based on response rates. Further, we wondered if journals had standards (or definitions) for how response rate information was to be reported in published articles. (As a corollary, we wondered if associate editors would have different ideas about these issues than editors-in-chief.) Finally, we wondered about the current state or practice in social science journals regarding the reporting of this information and whether or not there had been any change over the last decade.

From our study of journal editors and associate editors, we learned that, for the most part, submissions are, indeed, peer-reviewed: 84 percent of our respondents indicated that 50 percent or more of submissions were sent out for peer review. Furthermore, the journal editors told us that less than 50 percent of submissions that present survey data are accepted—but nearly all editors say that their journal does not limit the number of survey articles.

Further, approximately 90 percent of all editors indicated that response rate is either very or somewhat important in publication decisions. Despite that assertion, no editors indicated that their journal had written response rates standards; however, 13 percent indicated they have unwritten standards (or "rules of thumb"). And, nearly 97 percent of all editors said response rate standards at their journal have not changed over the past 10 years.

Associate editors do indeed appear to differ somewhat in their interpretation of how these issues are handled. Associate editors tend to give lower estimates for the percent of articles sent out for peer review, and are more likely to estimate a higher number of submissions and a higher percent of submissions accepted for publication. Also, they are slightly more likely to indicate a higher percentage of submissions which present survey data, and slightly more likely to think that their journal limits the number of publications that present survey data. Finally, associate editors tend to rate response rate slightly more important in publication decisions than their editors. By contrast, editors are more likely to say that their journal has unwritten response rate standards, indicate that submissions are rejected primarily due to low response rate, and report changes in response rate standards over the past 10 years.

Reports by editors from various disciplines differed on some questions. The key differences by discipline are:

- **Health**: report a higher number of submissions, 75 percent or less of articles sent out for peer review, less than 10 percent accepted for publication, 25 percent or fewer of submissions present survey data, only report between 26 and 50 percent of submission present survey data are accepted, some report response rate is not very important in publication decisions, 50 percent said have unwritten standards

- **Statistics**: lower number of submissions, at least 50 percent sent out for peer review, 26 to 50 percent accepted, 25 percent or fewer of submissions present survey data, only report between 26 and 50 percent of submission present survey data are accepted, only ones at all to report response rate is not important in publication decisions, 38 percent said never rejected primarily due to low response rate, all less than 25 percent of rejected submissions present survey data

- **Political Science/Survey Research**: less than 10 percent accepted for publication, 25 percent or fewer of submissions present survey data, some report response rate is not very important in publication decisions, 14 percent had unwritten standards, 57 percent said never rejected primarily due to low response rate, all less than 25
percent of rejected submission present survey data, only to report response rate standards changed over past 10 years

- **Psychology**: at least 50 percent sent out for peer review, 26 to 50 percent accepted, 25 percent or fewer of submissions present survey data, some report response rate is not very important in publication decisions, 17 percent said never rejected primarily due to low response rate

- **Sociology**: less than 10 percent accepted for publication, 20 percent had unwritten standards, 25 percent said never rejected primarily due to low response rate, all less than 25 percent of rejected submission present survey data

- **Education**: at least 50 percent sent out for peer review, only ones to report journal limits number of publications of articles which present survey data, 20 percent said have unwritten standards, 25 percent said submissions always rejected due to low response rate

- **Marketing Research**: lower number of submissions, 50 percent said never rejected primarily due to low response rate

The current state of reporting or definitional standards regarding response rate information appearing in journals appears, from this analysis, to be, quite frankly, poor. Our analysis of over 150 RDD survey-based articles from 2000-2005 revealed that there is a large amount of information missing from many of the journal articles included in this review, including sample sizes, numbers of completes, response or cooperation rates, explanations of how those rates were calculated, as well as other methodological information. While the Political Science/Survey Research journals tended to do a better job of reporting some of this information, it is fair to say that the analysis shows that reporting of this information is sporadic at best. Those journals that have included random-digit-dialed studies have published work with response rates as low as 16 percent, and there has been an overall downward trend in the response rates and cooperation rates cited since 2000.

Despite frequent calls—beginning over 50 years ago (Dodd, 1947) and repeated into this century (Kviz, 1977; Smith, 2001)—for standards in defining and reporting response rates, it is obvious from the results reported here that authors and journal editors have yet to take heed. While journal editors overwhelmingly (89 percent) say that response rate is at least somewhat important in publication decision-making, it would appear that that feeling or perception is loosely interpreted; that is, there are not written standards or conventions for either reporting response rate information or deciding minimum thresholds. Adding to the confusion or lack of clarity about these standards, associate editors seem to have different opinions than editors about how to apply these unwritten rules of thumb. While a distinct minority (13 percent) of our respondents told us that they used a “rule of thumb,” the application of such resulted in studies being published based on surveys with response rates of 30 percent to 70 percent. Moreover, even if these unwritten standards do exist and were applied consistently, they have not changed in at least the last 10 years, according to our data.

AAPOR, following a similar, earlier effort by CASRO in 1982, published the first edition of its “Standard Definitions” monograph in 1998 (AAPOR, 2004). Indeed, our data do show some effect from this professional association-directed attempt to implement standards. As shown in Exhibit 24 above, the AAPOR or CASRO method of calculating response rates is increasingly showing up in journal articles. That happy result is tempered by the sobering fact that less than
half of the articles appearing across all the journals we examined used (published) these definitions and methods. It seems, from our results, that AAPOR and CASRO have been largely successful in “getting the word out” to a subset of authors and editors: the survey research community makes heavy use of what we have defined as “Political Science/Survey Research” journals, but it is equally obvious that AAPOR and CASRO’s definitions and standards have not been adopted by authors and editors in disciplines that are farther removed from AAPOR’s core. It also interesting to note—and most likely not mere coincidence—that the largest documented (in our data) decline in mean response rates over time occurs in the very journals that have been most successful in applying and reported standard definitions for response rates.

In our opinion, it is vitally, critically important that response rate information be reported along with data analysis results and substantive conclusions drawn in any published article relying on survey data. It is difficult to believe that editors, or ultimately (and perhaps more importantly), readers and other researchers, can adequately evaluate the strength and robustness of findings and conclusions in scholarly work without secure knowledge about the purity and quality of the underlying data. As Presser (1984) notes, the omission of such information is “inconsistent with the nature of the scientific enterprise, which calls for disclosure of the method by which results are obtained.”

We all, then, need to be evangelical, it would seem, and spread the message about response rate standards and definitions to all the social science and Health-related disciplines. If we do not, we will continue to see publications that may be based on surveys which employ poor practice, resulting in a communal black eye. When editors do not require authors to document the details of survey research, we all suffer the consequences.
References

