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Abstract 

Calibration techniques, such as poststratification, use auxiliary information to improve the efficiency of survey estimates. 

The control totals, to which sample weights are poststratified (or calibrated), are assumed to be population values. Often, 

however, the controls are estimated from other surveys. Many researchers apply traditional poststratification variance 

estimators to situations where the control totals are estimated, thus assuming that any additional sampling variance 

associated with these controls is negligible. The goal of the research presented here is to evaluate variance estimators for 

stratified, multi-stage designs under estimated-control (EC) poststratification using design-unbiased controls. We compare 

the theoretical and empirical properties of linearization and jackknife variance estimators for a poststratified estimator of a 

population total. Illustrations are given of the effects on variances from different levels of precision in the estimated 

controls. Our research suggests (i) traditional variance estimators can seriously underestimate the theoretical variance, and 

(ii) two EC poststratification variance estimators can mitigate the negative bias. 
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1. Introduction 

 
Poststratified estimators, and other calibration estimators, 

are used in many types of surveys to reduce variances or to 

correct for frame deficiencies. Specific examples include 

large U.S. government surveys, such as the Consumer 

Expenditure Survey (see, e.g., Jayasuriya and Valliant 1996); 

surveys of specialized populations, such as the U.S. 

Department of Defense Survey of Health Related Behaviors 

among Military Personnel (Bray, Hourani, Rae, Dever, 

Brown, Vincus, Pemberton, Marsden, Faulkner and 

Vandermaas-Peeler 2003); and a myriad of surveys outside 

the U.S. including the Canadian Retail Trade Survey (see, 

e.g., Hidiroglou and Patak 2006), the Swedish Labour Force 

Survey (Mirza and Hörngren 2002), and the British 

Household Panel Survey (Taylor, Brice, Buck and Prentice-

Lane 2007).  

Calibration estimators, such as those generated under 

poststratification, are used to minimize errors associated with 

incomplete sampling frames (i.e., undercoverage) and with 

sampling and nonresponse (see, e.g., Särndal, Swensson and 

Wretman 1992; Lessler and Kalsbeek 1992; Kott 2006). For 

example, estimates from the Behavioral Risk Factor 

Surveillance System (BRFSS), a nationwide random-digit-

dial (RDD) telephone survey conducted by the U.S. Centers 

for Disease Control and Prevention (CDC), are poststratified 

to counts that include households with and without landline 

telephone service (Centers for Disease Control and 

Prevention 2006). The decrease in the errors is linked to the 

association of the population control totals with the frame 

undercoverage, patterns of non-ignorable nonresponse, and 

the variable of interest (Kim, Li and Valliant 2007).  

When relevant population controls do not exist, many 

researchers use survey-estimated control totals, and apply 

traditional variance formulae as if the controls were known 

without error. For example, Nadimpalli, Judkins and Chu 

(2004) adjusted weights for the 2003 National Survey of 

Parents and Youth to the number of U.S. households with 

children ages 9-18 estimated from the Current Population 

Survey (CPS) using a ratio-raking algorithm (www.census. 

gov/cps). Estimates of how people in the U.S. spend their 

time can be calculated from The American Time Use Survey 

using weights that have been poststratified to projected 

estimates from the U.S. decennial Census (Killion 2006). 

More recently, researchers at the Pew Research Centers 

calibrated weights for a set of 2008 U.S. presidential pre-

election surveys to population estimates from the March 

2007 CPS, as well as to estimates on telephone usage 

patterns from the July-December 2007 National Health 

Interview Survey (Keeter, Dimock and Christian 2008). 

The goal of our research is to develop and evaluate 

variance estimators for point estimates with weights that 

contain a poststratification adjustment to a set of survey-

estimated control totals. We label the methodology which 

properly accounts for the estimated controls as estimated-

control (EC) poststratification. In this paper, we focus 

specifically on the EC poststratified (ECPS) estimator of a 

population total for data collected from a stratified, multi-

stage design, where the first-stage sampling units are selected 

with replacement. The remainder of this section gives a brief 

review of weight calibration and poststratification. Section 2 
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contains an explicit definition of the ECPS estimator under 

study, followed in Section 3 by an evaluation of the bias 

properties. Through a theoretical evaluation (Section 4) and a 

simulation study, we compare variance estimators developed 

for the ECPS estimator with a variance estimator chosen 

under the naïve “population control total” assumption. Both 

linearization and replication variance estimators are 

examined in our research. We provide illustrations on the 

effects of different levels of precision in the estimated 

controls on the variance estimates. The specifications for the 

simulation study are detailed in Section 5, followed by a 

summary of the results (Section 6). We conclude the paper 

with a brief summary and an overview of future research in 

this area. 

Calibration estimators (Deville and Särndal 1992), such 

as a poststratified estimator of a population total, borrow 

strength from auxiliary information to improve the effi-

ciency of survey estimates over simpler weighting methods. 

When the auxiliary variables are (linearly) related to the set 

of key survey variables, calibration estimators can be very 

efficient.  

The general form of a traditional or fixed-control 

calibration estimator is best described as an expansion 

estimator or “linear weighting” estimator as discussed in 

Estevao and Särndal (2000). Define s to be the set of sample 

elements from a probability sample, and 1/k kd = π  to be 

the design weight for element k such that Pr ( ).k k sπ = ∈  

An estimated population total of a variable y is ŷt =  

,k s k kw y∈∑  where the calibration weight ( )k k kw a d=  for 

the thk  element defined as a function of the design weight, 

,kd  and a calibration-adjustment factor, ,ka  also known as 

a g-weight (Särndal et al. 1992). The calibration weights are 

calculated by minimizing a specified function that measures 

the distance between the design and calibration weights 

subject to a set of constraints defined as:  

ˆ
Ux Ax=t t  (1) 

where ,k UUx k∈∑=t x  the vector of population controls 

(counts) corresponding to the ( 1)G G ≥  auxiliary 

variables; ˆ ,k sx k kw∈∑=t x  the estimated population 

controls corresponding to the components of ;Uxt  and kx  is 

a vector of length G  containing auxiliary or benchmark 

variable values for element k. Note that kx  may contain 

ones and zeros to indicate the presence or absence of a 

certain characteristic (e.g., age 18-25), or larger values (e.g., 

number of children). An example of such a calibration 

system is the generalized least squares (or chi-square) 

distance function 2( ) /
Ak s k k k kw d c d∈∑ −  that is minimized 

subject to the constraints in (1). This system generates a 

closed-form solution called the generalized regression 

estimator (GREG) for 1kc =  (Deville and Särndal 1992). 

The poststratified estimator is a special case of the GREG.  

Variance estimation techniques for the poststratified 

estimator, and more generally for the GREG, have been 

widely studied. Binder (1995) demonstrates techniques used 

to calculate a Taylor linearization variance estimator for the 

GREG. Additional references for the linearization variance 

estimator under poststratification (and calibration more 

generally) include Deville, Särndal and Sautory (1993), 

Demnati and Rao (2004), and Hidiroglou and Patak (2006). 

Särndal, Swensson and Wretman (1989) developed an 

approximate linearization variance for the GREG of a 

population total as a function of the population residuals 

from a specified model and the design weights ( ).kd  

Valliant (1993) and Yung and Rao (1996) modified the 

residual-based variance estimator by multiplying the sample 

residuals by the calibration weights ( ).k k kw a d=  They 

demonstrated that this revised estimator, created by lin-

earizing the associated jackknife, reduced the bias asso-

ciated with the original formula. This variance estimator is 

also discussed in Särndal et al. (1992), Stukel, Hidiroglou 

and Särndal (1996), and in Chapter 11 of Särndal and 

Lundström (2005). Properties of replication variance 

estimators (i.e., jackknife and BRR) have been examined in, 

for example, Valliant (1993), Rust and Rao (1996), Canty 

and Davison (1999), Théberge (1999), Rao and Shao 

(1999), Yung and Rao (1996; 2000), and Kott (2006).  

An assumption in the articles above is that the control 

totals, to which the auxiliary sample estimates are adjusted, 

are either true population values known without error, or are 

taken from an independent, highly precise survey that is 

much larger than the survey requiring calibration. In some 

cases, however, these controls are estimated from other 

surveys with non-negligible sampling variances. For 

example, there are efforts to calibrate Web panel surveys to 

separate, higher-quality reference surveys that are not much 

larger than the panel surveys themselves (e.g., Krotki 2007; 

Terhanian, Bremer, Smith and Thomas 2000).  

Many researchers apply formulae developed for tradi-

tional poststratification even though the controls have been 

estimated. The tacit assumption is that any additional error 

(variance and bias) associated with these controls is 

negligible and can be ignored. Currently, the validity of this 

assumption can not be checked until a complete picture of 

EC poststratification has been developed. 

 
2. The estimated-control poststratified estimator  

To facilitate our discussion of the estimated-control post-

stratified estimator, we label the survey requiring post-

stratification as the analytic survey and the source of the 

control totals as the benchmark survey. In practice, more 

than one benchmark survey may be tapped for the control 

totals. However, we will assume only one benchmark 
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survey for the theoretical development so that control total 

variances and covariances are estimable. 

Let U represent the finite target population containing N  

elements and k Uy kt y∈∑=  represent the population total of 

interest for a variable y. Let As  represent a random sample 

of size An  from the frame AU  for the analytic survey. A 

random sample Bs  of size Bn  is selected for the benchmark 

survey from the corresponding sampling frame .BU  We 

allow the possibility that each of the frames, AU  and ,BU  

do not completely cover the target population U. However, 

coverage is treated as a random event so that all elements in 

the target population have a positive probability of being 

covered by either the analytic or the benchmark survey 

frame.  

As a convention throughout the paper, an “A” subscript 

signifies an association with the analytic survey such as a 

sample design parameter or an estimate. A “B” subscript 

identifies the benchmark survey quantities. These subscripts 

are absent from the parameters associated with the 

population of interest, i.e., .yt  

For the stratified, multi-stage design assumed for the 

analytic survey, ( 2)Ah Ahm m ≥  primary sampling units 

(PSUs), indexed by i, are selected with replacement from a 

total of AhM  PSUs in the thh  design stratum ( 1, ,h H= …  

with 2).H ≥  We assume that Ahin  elements, each indexed 

by k, are selected from AhiN  in PSU hi in such a way that 

an unbiased estimate of the PSU total can be made. The 

design weight, ,kd  is calculated as the inverse of the 

unconditional inclusion probability for ,Ahik s∈  the set of 

analytic survey elements within the thhi  PSU. Thus, ,An  

the size of the analytic survey sample, is calculated as 

1 1 .AhmH
h iA Ahin n= =∑ ∑=  Elements for the benchmark survey are 

randomly drawn from the corresponding sampling frame; 

no explicit specifications are made for the random sampling 

method. 

Poststratification can be used to correct for sampling and 

coverage errors. Therefore, we allow undercoverage in the 

analytic-survey, as well as, the benchmark-survey sampling 

frames. Additionally, we do not consider the effects of 

nonresponse.  

Suppose that the population U can be divided into 

1, ...,g G=  mutually exclusive and exhaustive poststrata. 

When the population count of elements, ,gN  is known for 

each poststratum, the traditional poststratified estimator of a 

total for y is defined as  

1

ˆ
ˆ ,

ˆ

G
Ayg

yPS g
g Ag

t
t N

N=

= ∑  (2) 

where ky  is the value of the analysis variable y for element 

k; ˆ ,
Ak sAyg gk k kt d y∈∑= δ  the total of y in poststratum g esti-

mated from the analytic survey data; ˆ
AgN = ,

Ak s gk kd∈∑ δ  

the analytic survey estimated total in poststratum g; and 

1gkδ =  indicates membership in the thg  poststratum and 

zero otherwise. Note that Âygt  may also be expressed as 
ˆ ,

Agk sAyg k kt d y∈∑=  where Ags  indicates the set of analytic 

survey elements in poststratum g. The “hat” notation in the 

expression above is used to distinguish a population 

estimator (e.g., ˆ )AgN  from the known population parameter 

(e.g., ).gN  If the count of elements in poststratum g is 

estimated by setting 1ky =  in the formula for ˆ ,Aygt  then 

ŷPSt  equals .gN  In this sense, ŷPSt  is poststratified to the 

population counts 1, , .GN N…  

In certain situations, however, the population counts are 

not available and must be estimated from a benchmark 

survey. Define the ECPS estimator of a population total of a 

variable y as  

1

ˆ
ˆˆ .

ˆ

G
Ayg

yP Bg
g Ag

t
t N

N=

= ∑  (3) 

The number of population elements in the thg  

poststratum ( 1, , )g G= …  estimated from the benchmark 

survey is denoted as ˆ ,
Bgl sBg lN w∈∑=  where Bgs  is the set 

of sample elements in poststratum g from the benchmark 

survey and lw  is the weight associated with the thl  

element. The calibration-adjustment factors applied to the 

analytic survey design weights for ŷPt  are calculated as 
ˆ ˆ/k Bg Aga N N=  for .Agk s∈  

Relating the poststratified estimators to the calibration 

system discussed in the previous section, ˆ
Axt  is a G-length 

vector of estimated population counts for each poststratum 

such that 1
ˆ ˆ ˆ( , , ) ,Ax Ax AxGt t ′=t …  where ˆ

Âxg Agt N≡ =  

Ak s k gkd∈∑ δ  and 1k gkx ≡ δ =  if the element k is a 

member of the thg  poststratum and 0 otherwise. The vector 

Uxt  corresponds either to 1( , , )GN N ′=N …  for the ŷPSt  

estimator given in (2), or to 1
ˆ ˆ ˆ( , , ) ,B B BGN N ′=N …  a 

1G ×  vector of benchmark control estimates, for the ŷPt  

estimator given in (3). 

The estimator ŷPt  can be expressed in matrix notation as 
ˆˆ

ŷP B At ′= N Y  where 
1ˆ ˆ ˆ( ) ,A A Ay

−=Y N t  a 1G ×  vector of 

analytic survey estimates of the form 1 1
ˆ ˆˆ[ / , ,A A At N=Y …  

ˆˆ / ] ;AG AGt N ′
1

ˆ ˆ ˆdiag ( , , ),A A AGN N=N …  a diagonal matrix 

of poststratum totals estimated from the analytic survey; and 

1
ˆ ˆ ˆ[ , , ]Ay A AGt t ′=t …  is a 1G ×  vector of poststratum 

totals for the outcome variable estimated from the analytic 

survey. The remaining variables associated with the matrix 

notation were defined previously. 

An effective poststratification adjustment can reduce the 

bias in the resulting point estimates and will either reduce or 

minimally inflate the variance in comparison to the 

unadjusted weight. This effect is well known for traditional 

poststratification; we provide the comparative evaluation 

under an estimated-control setting in the next sections. 
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3. Bias in the ECPS of a population total 
 

Traditional poststratification is known for reducing the 

bias associated with an incomplete sampling frame. This 

reduction is most successful when poststrata are formed 

such that the within-poststratum correlation of ky  with the 

probability of the thk  element being included on the 

sampling frame is very near zero (Kim, Li and Valliant 2007).  

To evaluate the (unconditional) design-based bias for 
ˆ ,yPt  we must account for the random property of four 

components – the analytic and benchmark sample designs 

and the population coverage propensities for the 

corresponding sampling frames. Following the work of 

Kim, Li and Valliant (2007, equation 2), the approximate 

design bias of ŷPt  as an estimator of the population total 

k Uy kt y∈∑=  is calculated as 

1

1

ˆ ˆBias ( ) ( )

1 Cov( , )

yP yP y

G
Bg

yg Bg g Ag Ag
g g

t E t t

N
t N y

N

−

=

= −

   
≅ − + φ φ  

    
∑

 
(4)

 

where gN  is the population size for the set of elements gU  

within poststratum g; ˆ( ),Bg BgN E N=  the expected value 

of the poststratum estimates under the benchmark survey 

design; Cov( , )g Agy φ = 1 ( ) ( ),
gk Ug k g Ak AgN y y−

∈∑ − φ − φ  

the population covariance between the outcome variable 

( )ky  and the coverage propensities ( )Akφ  within post-

stratum ;g / ,g yg gy t N=  the thg  poststratum mean of 

;y ,
gk Uyg kt y∈∑=  the population total of y within 

poststratum g; and / ,Ag Ag gN Nφ =  the average coverage 

propensity within the poststratum under the analytic survey 

design with ˆ( ).Ag AgN E N=  Note that the population total 

may also be expressed as .gy ygt t∑=  

Components of the bias are zero only under certain 

conditions. (i) If Bg gN N=  for all g  (i.e., no coverage 

errors in the benchmark sampling frame), then the bias is 

dependent only on the association between the outcome 

variable and the coverage propensities, Cov( , ).g Agy φ  The 

value of ˆBias ( )yPt  then reduces to the formula provided in 

Kim, Li and Valliant (2007, equation 2) for the traditional 

poststratified estimator, ˆ .yPSt  (ii) If the coverage proba-

bilities are constant within each poststratum (i.e., ,Ak Agφ =φ  

gk U∈  for all ),g  then the second bias component is zero. 

Only if both conditions are satisfied can we say that ŷPt  is 

approximately unbiased. Some may argue that a “perfect” 

combination of poststrata could be formed such that the 

positive and negative components cancel; however, we 

believe this likelihood to be so rare as to be virtually 

impossible. 

Having examined bias, we present an evaluation of the 

variance of ˆ .yPt  For some estimators, the contribution of the 

bias (squared) to the total mean square error (MSE) is small 

relative to the variance. 

4. Variance estimation for the ECPS 
 

Variance estimators have been developed for traditional 

poststratification and are available in software designed to 

analyze survey data, e.g., R
®
 (R Development Core Team 

2009), SAS
®
 (SAS Institute Inc. 2009), Stata

®
 (StataCorp 

2010), and SUDAAN
®
 (Research Triangle Institute 2008). 

However, limited work has been completed on variance 

estimation for EC poststratification.  

Four EC variance estimators for ŷPt  that account for the 

variance in the control totals are presented in the following 

subsections after defining the population sampling variance. 

They include one newly developed linearization variance 

estimator, and three delete-one-PSU (delete-one) jackknife 

variance estimators. With the delete-one jackknife, repli-

cates are created by sequentially deleting one PSU and 

adjusting the weights for the remaining PSUs within the 

corresponding design stratum. This results in a total of 

1
H
hA Ahm m=∑=  replicates calculated by summing the num-

ber of analytic-survey PSUs per stratum ( )Ahm  across the H 

strata ( 1, ..., ).h H=  

An effective variance estimator will reproduce the 

corresponding population sampling variance in expectation. 

The approximate (or asymptotic) population sampling 

variance of ˆˆ
ŷP B At ′= N Y  has the following form: 

ˆˆˆAV( ) 2 Cov( , )yP B A B A B A B A B A

B A B A B A

t ′ ′ ′= + +

′ ′= +

N V N Y N Y N Y V Y

N V N Y V Y
 
(5)

 

where ˆ( ),B BE=N N  a vector of expected values for the 

benchmark poststratum counts within the G  poststrata; 

1
ˆ ˆ ˆ( , , )B B BGN N ′=N …  is a G-length vector of control totals 

estimated from the benchmark survey; AY  is a G -length 

vector with population components of the form Agy =  

/ ;Ayg Agt N AV  is the population (variance-)covariance matrix 

of the estimated components of the vector ;AY  and BV  is 

the covariance matrix of the G  benchmark control 

estimates ˆ .BN  The first component, ,B A B
′N V N  is the 

approximate variance for the traditional poststratified 

estimator ˆ ,yPSt  i.e., the benchmark estimates are treated as 

fixed. The component, ,A B A
′Y V Y  is the variance associated 

with the benchmark estimates conditioned on the analytic 

survey sample; this is the EC poststratification variance 

component. Because we assume that the analytic and 

benchmark surveys are independent, the covariance of 

estimates from the two surveys is, by definition, zero. 

Hence, the component ˆˆCov( , )B AN Y  above is eliminated 

from the expression. 

Krewski and Rao (1981), Rao and Wu (1985), and others 

demonstrated the asymptotic consistency of the linearization 

and jackknife variance estimators for nonlinear functions. 

However, this examination needs to be extended to the EC 

poststratification. We discuss the set of EC variance 
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estimators for the population sampling variance below 

identified or developed for our research. The sample 

estimators were calculated by substituting sample estimates 

for the corresponding variance parameters. We begin with 

an evaluation of a traditional or naïve poststratified variance 

estimator that does not account for the variation in the 

estimated controls.  
4.1 A traditional variance estimator for EC 

poststratification (Naïve)   
A variety of variance estimators have been developed for 

poststratification estimators. With all of the methods, the 

controls are assumed to be fixed and known without error. 

Therefore, ,A B A
′Y V Y  the second (positive) component in 

expression (5), is zero because B =V 0  by assumption. The 

linearization variance estimator has the form  

Naïve
ˆ ˆ ˆˆvar ( )yP B A Bt ′= N V N  (6) 

where ˆ
BN  is the vector of the G  benchmark control total 

estimates, and ˆ
AV  is the estimated covariance matrix of the 

estimates 1 1
ˆ ˆ ˆˆ ˆ( / , , / ).A Ay A AyG AGt N t N=Y …  Because the 

second component in the second line of (5) is not estimated, 

any variance formula developed for traditional post-

stratification will by definition underestimate the population 

sampling variance. However, highly precise benchmark 

estimates may contribute a negligible EC-poststratification 

variance component to the overall estimate. Thus, the 

difference between the estimates for traditional and EC 

poststratification will for these situations also be negligible.  
4.2 Taylor series linearization (ECTS)  

A linearization variance estimator for the ŷPt  has the 

form: 

ECTS
ˆ ˆˆ ˆ ˆ ˆˆvar ( )yP B A B A B At ′ ′= +N V N Y V Y  (7) 

where ˆ
BV  is the estimated benchmark covariance matrix for 

the set of G control totals. The remaining terms are defined 

for expression (6). The ECTS formula is a function of the 

variance under traditional poststratification and an additive 

inflation term associated with the variation in the 

benchmark controls, i.e., ECTS Naïve
ˆ ˆvar ( ) = var ( )yP yPt t +  

ˆ ˆˆ .A B A
′Y V Y  

Ideally, the benchmark survey analysis file would be 

available to calculate the values for ˆ .BV  However, 

researchers may have to rely on published estimates for only 

the marginal control totals, i.e., point and variance estimates 

by one characteristic instead of the counts and covariance 

estimates for a set of characteristics. The implications of 

having limited information are discussed further in 

Section 4.4. 

 

  

4.3 Fuller two-phase jackknife method (ECF2)  
Isaki, Tsay and Fuller (2004) applied a two-phase delete-

one jackknife variance estimator developed by Fuller (1998) 

to an EC poststratification situation. The premise behind 

Fuller’s methodology (ECF2) is to take a spectral 

(eigenvalue) decomposition of the benchmark covariance 

matrix ˆ( ),BV  develop benchmark adjustments that are a 

function of the resulting eigenvalues and eigenvectors, and 

add the adjustments to the vector of benchmark controls 
ˆ( )BN  to create a set of replicate controls. A randomly 

chosen subset of the Am  replicates is poststratified to the G  

constructed replicate controls where the total number of 

PSUs must equal or exceed the number of poststrata, i.e., 

.Am G≥  Specifically, the benchmark control total for the 
thr  replicate is defined as  

( ) ( )
ˆ ˆ ˆB r B h rc ′= +N N z  (8) 

where 1( ) ( ) ( )ˆ ˆ ;G
gr r g r g= |∑′ ′= δ δz z /( 1),h Ah Ahc m m= −  a 

constant related to the delete-one jackknife variance 

method; ( )rδ  is a zero/one indicator that identifies the G  

(out of )Am  randomly chosen replicates to receive an 

adjustment; ( ) 1g r|δ =  if the thg  component of the 

benchmark covariance decomposition is randomly chosen 

for the assignment given that replicate r is selected for 

adjustment; and ˆˆˆ ,g g g= λz q  a function of an eigenvector 

( ˆ
gq ) and the associated eigenvalue ˆ( )gλ  where 

1
ˆ ˆ ˆ ,G

gB g g=∑ ′=V z z  by definition. Thus, given that ( ) 1rδ =  

for a particular replicate, a single indicator ( )g r|δ  must also 

equal one; however, if ( ) 0,rδ =  then all indicators ( )g r|δ  

equal zero. 

The delete-one jackknife can take multiple forms 

depending on the centering value. We chose the somewhat 

conservative variance estimator centered about the full-

sample estimate for our research 4(v  in Wolter 2007, 

section 4.5). The delete-one jackknife variance estimator, 

ECF2
ˆvar ( ),yPt  is calculated as follows under the Fuller 

method for a stratified, multi-stage design.  

2

ECF2 ( )

1 1

2

( ) ( ) ( )
1 1

( 1)
ˆ ˆvar ( ) ( )

( 1) ˆˆ ˆ ˆ( )

Ah

Ah

mH
Ah

yP yP r yP

h rAh

mH
Ah

yP r yP h r A r
h rAh

m
t t t

m

m
t t c

m

= =

= =

−
= −

−
′= − +

∑ ∑

∑ ∑ z B

ɺɺ

(9)

 

where the terms in (9) are defined below. Note that the 

association of the thr  replicate to a particular design stratum 

is defined through the stratum membership of the eliminated 

PSU. The replicate estimates in (9) are defined as    

( )Âyg rt = ( )Ah Ahih i s k si r gk k kd d y∈ ∈∑ ∑ ∑ δ  and ( )
ˆ
Ag rN =  

( ) ,
Ah Ahih i s k si r gk kd d∈ ∈∑ ∑ ∑ δ  where the PSU-subsampling 

weights are calculated as 
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( )

0 if ,  

1 if  for and 

/( 1) if  but .

Ah

i r Ah Ah

Ah Ah

r i i s

d h h r s i s

m m r i h h

′

= ∈

 ′= ≠ ∈ ∈

 ′− ≠ =

 (10) 

The remaining terms in (9) are ( ) ( ) ( )
ˆ ˆˆ / ,A r Ayg r Ag rt N=B  the 

estimated mean of the outcome variable within poststratum 

g and replicate ;r  

( ) ( ) ( ) ( )1
ˆ ˆˆ( / ),

G

yP r Bg r Ayg r Ag rg
t N t N

=
= ∑ɺɺ  (11) 

a function of replicate estimates with ( )
ˆ
Bg rN  defined as the 

thg  component in expression (8); ( )ŷP rt  is the replicate 

estimate under traditional poststratification, namely 

1 ( ) ( )
ˆ ˆˆ( / );G

g Bg Ayg r Ag rN t N=∑  and ŷPt  is the estimated total 

given in expression (3) calculated from the complete sample 

file. Squaring the terms in (9) results in a variance 

component conditioned on the benchmark controls, a 

component due to the benchmark control variability, and a 

cross-term of lower order that is approximately equal to zero 

in expectation. The design-expectation of the resulting 

jackknife variance estimator is asymptotically equivalent to 
ˆAV( )yPt  in (5) only if the respective components are 

calculated with values from design-consistent estimators. 

Fuller (1998) also demonstrated that the jackknife variance 

of the replicate controls, ECF2
ˆvar ( ),BN  reproduces the 

estimated benchmark covariance matrix ˆ
BV  for every 

sample. 

Currently no software exists to calculate the ECF2. The 

six steps needed to calculate ECF2
ˆvar ( )yPt  using any 

appropriate programmable package are as follows:  

 

1. Calculate the full-sample estimate ŷPt  using 

expression (3). 

2. Determine the G eigenvalues ˆ
gλ  and eigenvectors 

ˆ
gq  for ˆ ,BV  and calculate the replicate adjustments 

ˆˆˆ .g g g= λz q  Concatenate the G G×  matrix of 

ˆ gz ’s with a ( )AG m G× −  matrix of zeros, and 

randomly sort the columns. Call this new AG m×  

matrix ˆ .Z  

3. Calculate a vector of length Am  with values equal to 

/( 1)h Ah Ahc m m= −  ordering from 1h =  to .H  

Populate each row of a AG m×  matrix, called ,C  

with this vector, i.e., the row values are repeated . The 

mA-length vector of jackknife stratum weights, ,RW  

is created with components equal to ( 1) /Ah Ahm m−  

where the deleted PSU is extracted from stratum h. 

4. Calculate the Hadamard (or element-wise) product 

(Searle 1982, page 49) of Ẑ  and C  denoted as 
ˆ .•Z C  Replicate the vector ˆ

BN  into the columns of 

a AG m×  matrix and add to ˆ .•Z C  This new 

AG m×  matrix, called ˆ ,BRN  contains the replicate 

benchmark controls discussed in expression (8) for all 

Am  replicates. 

5. Calculate the replicate estimates ( )
ˆ
Ag ry =  

( ) ( )
ˆˆ /Ayg r Ag rt N  by removing in-turn one PSU from the 

analytic survey sample file, adjusting the weights for 

the remaining PSUs ( RW  values), and summing the 

weighted values for the numerator and denominator 

within poststratum g. Call the resulting AG m×  

matrix  ˆ .RY  

6. Calculate the Am  replicate estimates, ( ),yP rtɺɺ  by first 

multiplying the elements ˆ
BRN  by ˆ

RY  and summing 

down the rows within a column. Next, subtract ŷPt  

from each of the Am  values and square the terms, 

multiply by the PSU-subsampling weight adjustments 

specified in (10), and sum across the Am  estimates. 

The resulting value is the estimated variance using the 

Fuller method, ECF2
ˆvar ( ).yPt  

 
4.4 Nadimpalli-Judkins-Chu jackknife method 

(ECNJC)  
Nadimpalli et al. (2004) developed a delete-one jackknife 

variance estimator that randomly perturbs the control totals 

for the complete set of replicates instead of adjusting only a 

subsample of replicates as discussed for the ECF2. The 

benchmark survey replicate control totals have the following 

form: 

( ) ( )
ˆˆ ˆ

B r B h h B rc R= +N N S ηηηη  (12) 

where /( 1),h Ah Ahc m m= −  as with the ECF2; 

1/( ) ,h AhR H m=  a function of the total number of 

analytic-survey strata ( )H  and PSUs ( );Ahm ˆ
BS  is a 

diagonal matrix of estimated standard errors for the 

benchmark controls; and ( )rηηηη  is a G -length vector of 

values randomly generated for each replicate from the 

standard normal distribution. The remaining terms are 

specified for the ECF2 following expression (8). Note that 

the covariance estimates included in the ECF2, i.e., the off-

diagonal values of ˆ ,BV  are set to zero for the ECNJC. 

The corresponding delete-one jackknife variance 

estimator of the poststratified total is calculated as follows: 

2

ECNJC ( )
1 1

( )
1 1

2

( ) ( )

( 1)
ˆ ˆvar ( ) ( )

( 1)
ˆ ˆ(

ˆ ˆ ) ,

Ah

Ah

mH
Ah

yP yP r yP
h rAh

mH
Ah

yP r yP
h rAh

h h r B A r

m
t t t

m

m
t t

m

c R

= =

= =

−
= −

−
= −

′+

∑ ∑

∑ ∑

S B

ɺɺ

ηηηη (13)

 

where ( )yP rtɺɺ  is computed as described for the ECF2 in (11) 

but  with  ( )
ˆ
Bg rN  defined by the thg  component in (12). 

Unlike the ECF2, the sample variance of the ECNJC 
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replicate controls given in (12) reproduces the benchmark 

covariance matrix BV  in expectation only if the covariance 

terms are truly zero (see Appendix A for details). If BV  is 

not diagonal, ECNJCvar  fails this test. 

Use of the ECNJC would be plausible in two cases: (i) 

the complete benchmark covariance matrix for the controls 

is unavailable (e.g., estimates taken from a previous report), 

or (ii) the covariance terms are negative so that the resulting 

values defined by (12) would lead to conservative variance 

estimates. The diagonal matrix for ˆ
BS  would be correct if 

the estimated poststratum counts were actually uncorrelated. 

However this is unlikely because of the multinomial 

structure of ˆ .BN  Given the setup for the ECNJC, the 

expectation of the variance estimator will not approximate 
ˆAV( )yPt  in (5); the bias term is related to the difference 

between the design expectation of 2ˆ
BS  and .BV  

 
4.5 Multivariate normal jackknife method (ECMV)  

The multivariate normal method (ECMV) is a 

generalization of the ECNJC and to our knowledge is first 

discussed in this paper. The ECMV uses the complete 

covariance matrix ˆ
BV  and relies on large-sample theory so 

that the control total adjustments may be modeled as 

coming from a G-dimensional multivariate normal (MVN) 

distribution. The replicate controls for the ECMV have the 

form 

( ) ( )
ˆ ˆ ˆ
B r B h h rc R= +N N εεεε  (14) 

where ( )
ˆ
rεεεε  is a G-length vector of random variables such 

that   ( )
ˆ
rεεεε

i.i.d.

∼ ˆMVN ( , );G B0 V /( 1);h Ah Ahc m m= −  and 

1/( ).h AhR H m=  

The delete-one jackknife variance estimator for the 

ECMV is calculated as 

2

ECMV ( )
1 1

( )
1 1

2

( ) ( )

( 1)
ˆ ˆvar ( ) ( )

( 1)
ˆ ˆ(

ˆˆ ) ,

Ah

Ah

mH
Ah

yP yP r yP
h rAh

mH
Ah

yP r yP
h rAh

h h r A r

m
t t t

m

m
t t

m

c R

= =

= =

−
= −

−
= −

′+

∑ ∑

∑ ∑

B

ɺɺ

εεεε  (15)

 

where ( )yP rtɺɺ  is computed as described for the ECF2 in (11) 

but  with  ( )
ˆ
Bg rN  defined by the thg  component in (14). 

Unlike the Fuller method, ECMV
ˆ ˆvar ( ) ;B B≠N V  instead, the 

ECMV must rely on the design-based properties of the 

estimator. The design expectation of this estimator is 

evaluated with respect to the MVN distribution conditioned 

on the benchmark estimates ( ),Eε  and then with respect to 

the benchmark survey design ( ).BE  As shown in 

Appendix B.1, 

ECMV
ˆ ˆ[ (var ( ) )] ( ).B B B BE E B E| =N Vε  (16) 

If ˆ
BV  is an approximately unbiased estimator of ,BV  

then the population covariance matrix is reproduced with 

this method.  

Under the Fuller two-phase method, ECF2
ˆVar[var ( )]B =N  

ˆVar ( )BV  because ECF2
ˆ ˆvar ( ) .B B=N V  To compare ECF2 

and ECMV further, note that if we define 1ky =  in the 

analytic survey, then ˆˆ .yP Bt ′= 1 N  As shown in 

Appendix B.2,  

ECMV

2

*

ˆVar[var ( )]

2ˆ ˆ ˆVar [ ] [ ( ) ] Var [ ]

B

B B B B B B

A

E
Hm

′ =

′ ′ ′+ >

1 N

1 V 1 1 V 1 1 V 1  (17)
 

where Am
∗  is the harmonic mean of the PSU sample sizes 

per stratum in the analytic survey. This suggests that the 

ECF2var  and the ECMVvar  have similar large sample 

expectations, though in practice the ECMV is likely to be 

more variable than the ECF2. We examine this issue 

through a simulation study described in the next section. 

 
5. Description of simulation study 

 
We complement the theoretical evaluation of the five 

variance estimators discussed in the previous section with 

an analysis of simulation results. 
 
5.1 Simulation parameters  

The simulation population is a random subset of the 2003 

National Health Interview Survey (NHIS) public-use file 

containing records for 21,664 adults. These records were 

divided into 25 strata, each containing six PSUs. Samples 

were selected from this “population” using a two-stage 

design. Two PSUs were selected with replacement using 

probabilities proportional to the total number of adults (PPS) 

within the PSU. From within each sample PSU, we selected 

simple random samples of ( )Ahin =  20 and 40 persons 

without replacement giving total sample sizes of 1,000 and 

2,000, respectively. Two within-PSU sample sizes were 

considered for this study to evaluate the effects of smaller 

analytic survey variance components, calculated by 

increasing ,An  on the variance of ˆ .yPt  For each 

combination of PSU and person-level samples (i.e., 50 

PSUs and either 1,000 or 2,000 persons), we selected 4,000 

simulation samples. We calculated the estimated population 

totals and associated variances for two binary NHIS 

variables: NOTCOV = 1 indicates that an adult did not have 

health insurance coverage in the 12 months prior to the 

NHIS interview (approximately 17 percent of the 

population); and PDMED12M = 1 indicates that an adult 

delayed medical care because of cost in the 12 months prior 

to the interview (approximately 7 percent of the population). 
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We exclude nonresponse from consideration in our current 

simulation study to minimize factors that might affect our 

comparisons. (Note: The interview questions for these 

variables can be found in the family core instrument at 

ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Survey_Quest

ionnaires/NHIS/2003/qfamilyx.pdf. Responses from ques-

tions FHI.070 and FAU.010/FAU.020 were used to 

generate the variables NOTCOV and PDMED12M, 

respectively). 

Poststratification may reduce variances slightly. How-

ever, in household surveys, this technique is mainly used to 

correct for sampling frame undercoverage, as well as other 

problems inherent with surveys. Each of the 4,000 

simulation samples was selected to mimic a sampling frame 

for the analytic survey that suffers from differential 

undercoverage, such as those used for many telephone 

surveys. Sixteen (G = 16) poststratification cells were 

defined by an eight-level age variable crossed with gender. 

The coverage rates for the 16 cells were created based on 

the population means for each age group by gender and 

range in value from 0.5 to 0.9. A coverage rate equal to 1.0 

would indicate full coverage. Before each sample was 

selected, the frame was designated as a stratified random 

subsample of the full population of 21,664. For example, 90 

percent of the male population 65-69 years of age was 

randomly selected to be in the sampling frame for the 

NOTCOV simulations. This process of subsetting the 

population to the frame was independently implemented for 

each sample and for each outcome variable. 

We suspect that the decision for researchers to use either 

a traditional or an EC poststratification variance estimator 

depends on the precision of the control totals. We calculated 

the benchmark covariance matrix ˆ( )BV  from the complete 

NHIS public-use data file (92,148 records) and ratio 

adjusted the values to reflect a sample size comparable with 

our simulation population (N = 21,664). The off-diagonal 

values of ˆ
BV  range from -0.05 to 0.75 with a mean value of 

0.22. From this matrix we calculated four covariance 

matrices for the simulation by dividing the original matrix 

by the adjustment factors 1.0, 3.6, 18, and 72. The 

adjustments reflect benchmark surveys with an approximate 

effective sample size of 21,700, 6,000 (≈ 21,700/3.6), 1,200, 

and less than 500, respectively. 

The simulation was conducted in R
®
 (Lumley 2009; R 

Development Core Team 2009) because of its extensive 

capabilities for analyzing survey data and efficiency with 

simulated analyses. Code was developed to calculate the 

linearization and replicate variance estimates for the EC 

poststratified estimator discussed above because the relevant 

code does not currently exist. 
 
 

5.2 Evaluation criteria  
The empirical results for the five variance estimators 

discussed in the previous section (Naïve, ECTS, ECF2, 

ECNJC, and ECMV) are compared using three measures 

across the 1, ,j = … 4,000 simulation samples, and the two 

outcome variables (NOTCOV and PDMED12M). The 

measures include: (i) the estimated percent relative bias of 

the variance estimator, ˆ(1/ 4,000 var ( ) mse)/mse
j

j yPt∑ −  

where ˆvar ( )
jyP

t  is one of the five variance estimates 

evaluated for sample j and mse is the mean square error of 

ŷPt  defined below; (ii) the 95% confidence interval 

coverage rate, 1 / 2ˆ1/ 4,000 (| | )j jI z z −α∑ ≤  where ˆ jz =  

ˆ ˆ( ) / var( );
j jyP y yPt t t−  and, (iii) the standard deviation of 

the estimated standard errors, calculated as the square root 

of 2ˆ ˆ1/(4,000 1) ( var ( ) 1/ 4,000 var ( )) .
j j

j jyP yPt t∑ ∑− −  

The  relative  bias  and  the root mean square error of our 

point estimators are calculated as ˆ1/ 4,000 ( ) /
j

j yP y yt t t∑ −  

and 2ˆmse 1/ 4,000 ( ) ,
j

s yP yt t∑= −  respectively.  
6. Simulation study results  

6.1 Point estimator  
To justify the need for poststratification, we initially 

evaluated the Horvitz-Thompson estimate ( )
As k kd y∑  for 

the two outcome variables. This estimator is known to be 

design-unbiased under pristine conditions. The percent 

relative bias indicates that the HT estimator is negatively 

biased, underestimating the population total by 38 percent 

for NOTCOV and 41 percent for PDMED12M. These large 

values show that some correction is needed to adjust for the 

non-negligible levels of bias. The percent relative bias for 

the poststratified estimator ŷPt  was much lower – the ŷPt  is 

positively biased by no more than two percent for both 

outcome variables.  
6.2 Variance estimators  

Adding to the theoretical evaluation discussed in Section 

4, the empirical results for an effective variance estimator 

should possess a percent relative bias either near zero or 

somewhat positive for a conservative measure (see Section 

5.2 for the formula of the percent relative bias).  

The percent relative biases generated from our simulation 

study are provided in Table 1. Bias estimates for the Naïve 

and ECNJC variance estimators are larger than for the other 

EC estimators for all our simulations. Estimates for the 

ECTS are somewhat smaller than the values calculated for 

the ECF2 and ECMV estimators for relatively small 

benchmark surveys. However, the differences are negligible 

as the size of the benchmark survey increases. 
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Table 1 

Percent relative bias estimates for five variance estimators by outcome variable and relative size of the benchmark survey to the 
analytic survey 
 

Relative Size ( ====A
n 1,000) Relative Size ( ====

A
n 2,000) 

Outcome Variable 
Variance 
Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8 

NOTCOV Naïve -50.3 -23 -10.7 -9.2 -56.0 -31 -14.2 -12.2 
 ECTS -4.5 -4.5 -6.1 -7.7 -0.2 -8.4 -8.2 -10.1 
 ECF2 -4.7 -4.6 -5.8 -7.5 0.1 -8.2 -8.3 -10.1 
 ECNJC -36.7 -17.1 -8.9 -8.2 -40 -24.2 -11.9 -11.1 
 ECMV -4.3 -4.1 -6.0 -7.5 -0.2 -8.1 -8.1 -10.0 

PDMED12M Naïve -34.4 -14.5 -5.7 -3.9 -48.1 -23.4 -10 -10.1 
 ECTS -3.3 -3.7 -2.7 -2.6 -4.7 -6.4 -5.1 -7.8 
 ECF2 -3.5 -3.5 -2.4 -2.3 -4.6 -6.8 -5.2 -7.8 
 ECNJC -24.5 -10.5 -4.0 -2.7 -35.1 -17.6 -7.6 -8.4 
 ECMV -3.0 -3.3 -2.4 -2.2 -4.3 -6.3 -5.0 -7.7 

 

The traditional poststratified estimator (Naïve) was most 

negatively biased among those compared as expected. 

When the benchmark survey is smaller than the analytic 

survey (and therefore produces estimates less precise than 

the analytic survey), the Naïve estimator is negatively 

biased by as much as 56 percent. The level of bias improved 

as the relative size of the benchmark survey increased; 

however, the Naïve estimator still resulted in, at best, a four 

percent underestimate. The ECNJC estimator fared slightly 

better than the Naïve estimator though the bias (-2.7 to -40 

percent) is still larger than the other EC variance estimators, 

which range between -10.1 and 0.1 percent.  

For a small benchmark survey relative to the size of the 

analytic survey (i.e., relative size less than one), the levels of 

(absolute) bias dramatically increased for the Naïve and 

ECNJC estimators. The opposite effect is noted for the other 

EC variance estimators. The variance component associated 

with the benchmark survey, e.g., ˆ ˆˆ
A B A
′Y V Y  shown for 

ECTSvar  in (7), becomes the dominate term within the EC 

variance estimators as the precision of the benchmark 

survey estimates decreases. Thus the benchmark variance 

component somewhat corrects for the underestimation 

associated with the analytic variance component. Additional 

research is needed to determine if a threshold exists for 

when such a counterbalance of bias can occur. The overall 

negative bias of our estimates is similar to the bias of 

linearization variance estimators as shown in another 

context by Rao and Wu (1985, section 4) and Wu (1985). 

However, further research is also needed to determine how 

to minimize the underestimation. 

Note that the relative sizes of 21.7 when An = 1,000 and 

10.8 when An = 2,000 both imply benchmark survey 

sample sizes of about 21,600. Thus the 2( / )BO M m  

component of the variance, ,A B A
′Y V Y  is more prominent 

for the estimates in Table 1 based on An = 2,000. This leads 

to larger relative biases in these estimates, relative to those 

produced under An = 1,000, even though the analytic 

survey sample size is larger.  

The patterns exhibited for the percent relative bias are 

reflected in the coverage rates for the 95 percent confidence 

intervals for the estimated totals but are not provided for 

sake of brevity. The Naïve and ECNJC estimators are more 

likely to experience confidence intervals coverage rates 

below 95 percent.  These rates approach the appropriate 

level as the precision of the benchmark survey estimates 

improves. However, the remaining EC variance estimators 

had coverage rates near acceptable levels regardless of the 

relative size of the surveys and therefore are more robust.  

The discussion so far suggests that there are minimal 

theoretical, as well as empirical, differences between the 

ECTS, ECF2, and ECMV methods. We finally look to the 

standard deviation of the estimated standard errors (SEs) in 

an attempt to distinguish the estimators. An examination of 

this variability can provide insight on the (empirical) 

stability of the variance estimators, i.e., an unstable variance 

estimator could generate a poor variance estimate based on 

the nuances of a particular sample. Table 2 contains the 

percent relative increase in the standard deviations for the 

ECF2 and the ECMV both in comparison to the ECTS. 

The variation in the ECMV variance estimates was 

noticeably larger than for ECF2 but only for relatively small 

benchmark surveys. The difference increased as the size of 

the analytic survey increased. This suggests that the ECF2 

may be preferred over the ECMV due to increased stability 

in the variance estimates. However, further research is being 

conducted on the threshold for when the instability can 

affect the estimates.  
7. Conclusions and future work  

The theoretical and analytical work discussed in this paper 

support the need for a new methodology to address post-

stratification using estimated control totals, i.e., estimated-

control (EC) poststratification. Traditional variance estimators 

can severely underestimate the population sampling variance 

resulting in, for example, incorrect decisions for hypothesis 

tests and sub-optimal sample allocations when the design is 

implemented in the future.  
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Table 2 
Percent increase in instability of variance estimates relative to the ects by outcome variable and relative size of the benchmark survey 
 

Relative Size ( ====A
n 1,000) Relative Size ( ====A

n 2,000) 

Outcome Variable 

Variance 

Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8 

NOTCOV ECF2 12.0 5.5 2.3 0.2 15.1 8.4 2.1 0.6 

 ECMV   21.2 7.4 1.8 0.3 30.8 8.5 2.4 0.7 

PDMED12M ECF2 7.7 3.8 1.1 0.4 12.0 6.3 2.1 0.7 

 ECMV 11.5 4.0 0.9 0.5 22.6 7.6 2.2 1.1 

 

The EC linearization variance estimator ECTSvar  in 

expression (7) shows promise for EC poststratification. This 

estimator is especially effective at reducing the percent 

relative bias experienced with the Naïve variance estimator in 

(6) when the benchmark survey is small relative to the 

analytic survey. The replication variance estimator ECF2var  

given in (9) is recommended specifically for studies requiring 

replicate weights such as when public-use analysis files are 

released without sampling design information to further 

protect data confidentiality and respondent privacy. The 

alternative replication estimator ECMVvar  also performed well 

and is somewhat easier to implement than ECF2var .  

Implementation of the recommended variance estimators 

requires specialized computer programs because the 

capabilities are currently not available in standard software. 

The linearization estimator may be more approachable 

because implementation involves a modification to available 

variance estimates, e.g., ECTS ECPS Naïve ECPS
ˆ ˆvar ( ) var ( )y yt t= +  

ˆ ˆˆ .A B A
′Y V Y  We provide a step-by-step discussion of the 

procedures required for the ECF2var  (see Section 4.3) to 

facilitate the creation of the computer program. 

Extensions to this research to be presented at a later date 

include a generalization to linear calibration, to other 

statistics including a ratio-estimated mean, and to domain 

estimation. We additionally are investigating whether 

threshold values are identifiable which determine (i) when 

there are negligible differences between traditional and EC 

variance estimation, and (ii) when the benchmark controls 

are too imprecise to use for calibration. We also plan to 

investigate the theoretical implications of measurement 

errors in the analytic as well as the benchmark surveys. 
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Appendix A  
Derivation of ˆ

ECNJCvar (N )
B
  

For the following derivations, let Eε  represent the 

expectation with respect to a standard normal distribution. 

All other terms are defined in the body of the paper. 

ECNJC ( ) ( )
1 1

( )
1 1

1ˆ ˆ ˆ ˆ ˆvar ( ) ( ) ( )

1 1ˆ ˆ

Ah

Ah

mH
Ah

B B r B B r B
h rAh

mH

B r B
h rAh

m

m

H m

= =

= =

− ′= − −

 
=  

 

∑ ∑

∑ ∑

N N N N N

S SΚΚΚΚ

 

where ( ) ( ) ( )r r r
′Κ = η ηΚ = η ηΚ = η ηΚ = η η , a G G×  cross-product matrix of 

standard normal values; and 2ˆ ˆdiag ( ).B B=S V  Because 

( )( ) ,r GEε = IΚΚΚΚ  a G-dimension identity matrix, we have 

ECNJC
ˆ ˆ[var ( )] diag( ).B BEε =N V  Therefore, ECNJC

ˆvar ( )BN  

does not reproduce ˆ
BV  in expectation. 

 
Appendix B  

Evaluation of the ECMV  
For the following derivations, let BE  and VarB  represent 

the expectation and variance with respect to the benchmark 

survey sampling design. Also, let Eε  and Varε  represent the 

expectation and variance with respect to the G-dimensional 

multivariate normal distribution, ˆMVN ( , ).G B0 V  All other 

terms are defined in the body of the paper.  
B.1: Derivation of ˆ

ECMV[var (N )]
B

E  given in (15)  
Using expression (14) and 2 /( 1),h Ah Ahc m m= −  

ECMV
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B.2: Derivation of ˆ
ECMVVar[var (N )]

B
 given in (15)  

When 1ky =  so that ˆˆ ,yP Bt ′= 1 N ECMV
ˆvar ( )B′ =1 N  

1 1
1 1 ( ) ( )

ˆ ˆ .AhmH
h rAh r rH m− −
= =∑ ∑ ′ ′1 1ε εε εε εε ε  Using the formula for the 

variance of a quadratic form (Searle 1982, section 13.5), we 

have 
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where 1 1 1
1( )H

hA Ahm H m∗ − − −
=∑=  is the harmonic mean 

of .Ahm  

 
References 

 
Binder, D.A. (1995). Linearization methods for single phase and two-

phase samples: A cookbook approach. Survey Methodology, 22, 1, 
17-22. 

 
Bray, R., Hourani, L., Rae, K., Dever, J., Brown, J.,  

Vincus, A., Pemberton, M., Marsden, M., Faulkner, D. and 
Vandermaas-Peeler, R. (2003). 2002 Department of Defense 
Survey of Health Related Behaviors Among Military Personnel. 
Tech. Rep. RTI/7841/006-FR, U.S. Department of Defense 
prepared by RTI International. URL http://dodwws.rti.org/ 
2002WWFinalReportComplete05-04.pdf. 

 
Canty, A.J., and Davison, A.C. (1999). Resampling-based variance 

estimation for Labour Force Surveys. The Statistician, 48, 379-
391. 

 
Centers for Disease Control and Prevention (2006). Technical 

Information and Data for the Behavioral Risk Factor Surveillance 
System (BRFSS) – BRFSS Weighting Formula. Atlanta, Georgia: 
U.S. Department of Health and Human Services, Centers for 
Disease Control and Prevention, September 11, 2006.  

 
Demnati, A., and Rao, J.N.K. (2004). Linearization variance 

estimators for survey data. Survey Methodology, 30, 1, 17-26. 
 
Deville, J.-C., and Särndal, C.-E. (1992). Calibration estimators in 

survey sampling. Journal of the American Statistical Association, 
87(418), 376-382. 

 
Deville, J.-C., Särndal, C.-E. and Sautory, O. (1993). Generalized 

Raking Procedures in Survey Sampling. Journal of the American 
Statistical Association, 88(423), 1013-1020. 

 

Estevao, V.M., and Särndal, C.-E. (2000). A Functional form 
approach to calibration. Journal of Official Statistics, 16(4), 379-
399. 

 
Fuller, W.A. (1998). Replication variance estimation for the two-

phase samples. Statistica Sinica, 8, 1153-1164. 
 
Hidiroglou, M.A., and Patak, Z. (2006). Raking ratio estimation: An 

application to the Canadian Retail Trade Survey. Journal of 
Official Statistics, 22(1), 71-80. 

 
Isaki, C.T., Tsay, J.H. and Fuller, W.A. (2004). Weighting sample 

data subject to independent controls. Survey Methodology, 30, 1, 
35-44.  

 
Jayasuriya, B.R., and Valliant, R. (1996). An application of regression 

and calibration estimation to post-stratification in a Household 
Survey. Survey Methodology, 22, 2, 127-137. 

 
Keeter, S., Dimock, M. and Christian, L. (2008). Calling Cell Phones 

in ’08 Pre-Election Polls. NEWS Release (December 18, 2008): 
Pew Research Center for the People & the Press. URL 
http://people-press.org/reports/pdf/cell-phone-commentary.pdf. 

 
Killion, R.A. (2006). Weighting Specifications for The American 

Time Use Survey (ATUS) for 2006. U.S. Bureau of the Census, 
Internal Memo (Doc.#ATUS-16). 

 
Kim, J.J., Li, J. and Valliant R. (2007). Cell collapsing in 

poststratification. Survey Methodology, 33, 2, 139-150. 
 
Kott, P.S. (2006). Using calibration weighting to adjust for 

nonresponse and coverage errors. Survey Methodology, 32, 2, 133-
142. 

 
Krewski, D., and Rao, J.N.K. (1981). Inference from stratified 

samples: Properties of the linearization, jackknife and balanced 
repeated replication methods. The Annals of Statistics, 9(5), 1010-
1019. 

 
Krotki, K. (2007). Combining RDD and Web Panel Surveys. 
Proceedings of the Survey Research Methods Section, American 
Statistical Association (in print). 

 
Lessler, J.T., and Kalsbeek, W.D. (1992). Nonsampling Error in 
Surveys. New York: John Wiley & Sons, Inc. 

 
Lumley, T. (2009). Survey: Analysis of complex survey samples. R 

package version 3.19. University of Washington: Seattle. 
 
Mirza, H., and Hörngren, J. (2002). The Sampling and the Estimation 

Procedure in the Swedish Labour Force Survey. Technical report, 
Statistics Sweden, Stockholm: Sweden. 

 
Nadimpalli, V., Judkins, D. and Chu, A. (2004). Survey Calibration to 

CPS Household Statistics. Proceedings of the Survey Research 
Methods Section, American Statistical Association, 4090-4094. 

 
R Development Core Team (2009). R: A Language and Environment 
for Statistical Computing. R Foundation for Statistical Computing, 
Vienna, Austria. Available: http://www.R-project.org. 

 

Rao, J.N.K., and Shao, J. (1999). Modified balanced repeated 
replication for complex survey data. Biometrika, 86(2), 403-415. 

 
Rao, J.N.K., and Wu, C.F.J. (1985). Inference from stratified samples: 

Second-order analysis of three methods for nonlinear statistics. 
Journal of the American Statistical Association, 80(391), 620-630. 

 



56 Dever and Valliant: A comparison of variance estimators for poststratification to estimated control totals 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Research Triangle Institute (2008). SUDAAN Language Manual. 
Release 10.0, Research Triangle Park, NC: Research Triangle 
Institute. 

 
Rust, K.F., and Rao, J.N.K. (1996). Variance estimation for complex 

surveys using replication techniques. Statistical Methods in 
Medical Research, 5, 283-310. 

 
Särndal, C.-E., and Lundström, S. (2005). Estimation in Surveys with 
Nonresponse. England: John Wiley & Sons, Inc. 

 
Särndal, C.-E., Swensson, B. and Wretman, J. (1989). The weighted 

residual technique for estimating the variance of the general 
regression estimator of the finite population total. Biometrika, 
76(3), 527-537. 

 
Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted 
Survey Sampling. New York: Springer-Verlag, Inc. 

 
SAS Institute Inc. (2009). SAS/STAT® 9.2 User’s Guide. Cary, NC: 

SAS Institute Inc. 
 
Searle, S.R. (1982). Matrix Algebra Useful for Statistics. New York: 

John Wiley & Sons, Inc. 
 
StataCorp (2010). Stata Statistical Software: Release 11. Survey 

Data, College Station, TX: StataCorp LP.  
 
Stukel, D.M., Hidiroglou, M.A. and Särndal, C.-E. (1996). Variance 

estimation for calibration estimators: A comparison of jackknifing 
versus Taylor linearization. Survey Methodology, 22, 2, 117-125. 

 

Taylor, M.F., Brice, J., Buck, N. and Prentice-Lane, E. (2007). British 
Household Panel Survey User Manual Volume A: Introduction, 
Technical Report and Appendices. University of Essex, 
Colchester. 

 
Terhanian., G., Bremer, J., Smith, R. and Thomas, R. (2000). 
Correcting Data from Online Survey for the Effects of Nonrandom 
Selection and Nonrandom Assignment. Research Paper: Harris 
Interactive. 

 
Thĕberge, A. (1999). Extensions of calibration estimators in survey 

sampling. Journal of the American Statistical Association, 
94(446), 635-644. 

 
Valliant, R. (1993). Poststratification and conditional variance 

estimation. Journal of the American Statistical Association, 88, 
89-96. 

 
Wolter, K.M. (2007). Introduction to Variance Estimation. New 

York: Springer Science+Business Media, LLC. 
 
Wu, C.F.J. (1985). Variance estimation for the combined ratio and 

combined regression estimators. Journal of the Royal Statistical 
Society, Series B, 47(1), 147-154. 

 
Yung, W., and Rao, J.N.K. (1996). Jackknife linearization variance 

estimators under stratified multi-stage sampling. Survey 
Methodology, 22, 23-31. 

 
Yung, W., and Rao, J.N.K. (2000). Jackknife variance estimation 

under imputation for estimators using poststratification 
information. Journal of the American Statistical Association, 
95(451), 903-915.  

 
 
 
 
 




