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Condition indexes and variance decompositions for diagnosing 
collinearity in linear model analysis of survey data 

Dan Liao and Richard Valliant 1 

Abstract 
Collinearities among explanatory variables in linear regression models affect estimates from survey data just as t hey do in 
non-survey data. Unde sirable effects are unnecessarily  inflated standard err ors, spuriously low or high t-statistics, and 
parameter estimates with illogical signs. The available collinearity diagnostics are not generally appropriate for survey data 
because the variance estimators they incorporate do not properly account for stratification, clustering, and survey weights. In 
this article, we derive condition indexe s and variance decompositions to diagnose collinearity problems in complex survey 
data. The adapted diagnostics are illustrated with data based on a survey of health characteristics. 
 
Key Words: Diagnostics for survey data; Multicollinearity; Singular value decomposition; Variance inflation. 
 
 

1. Introduction  
When predictor variables in a regression model are 

correlated with each other, this condition is referred to as 
collinearity. Undesirable side effects of collinearity are 
unnecessarily high standard errors, spuriously low or high 
t-statistics, and p arameter estimates with illogical signs or 
ones that are overly sensitive to small changes in data 
values. In experimental design, it may be possible to create 
situations where the explanatory variables are orthogonal to 
each other, but this is not true with observational data. 
Belsley (1991) noted that: “... in nonexperimental sciences, 
..., collinearity is a natural law in the data set resulting from 
the uncontrollable operations of the data-generating mecha-
nism and is simply a painful and unavoidable fact of life.” In 
many surveys, variables that are substantially correlated are 
collected for analysis. Few analysts of survey data have 
escaped the problem of collinearity in regression estimation, 
and the presence of this problem encumbers precise sta-
tistical explanation of the relationships between predictors 
and responses. 

Although many regression diagnostics have been de-
veloped for non-survey data, there are considerably fewer 
for survey data. The few articles that are available concen-
trate on identifying influential points and influential groups 
with abnormal data values or survey weights. Elliot (2007) 
developed Bayesian methods for weight trimming of linear 
and generalized linear regression estimators in unequal 
probability-of-inclusion designs. Li (2007a, b) and Li and  
Valliant (2009, 2011) extended a series of traditional diag-
nostic techniques to regression on complex survey data. 
Their papers cover residuals and leverages, several d iag-
nostics based on case-deletion (DFBETA, DFBETAS, 
DFFIT, DFFITS, and Cook’s Distance), and the forward 
search approach. Although an extensive literature in applied 

statistics provides valuable suggestions and guidelines for 
data analysts to diagnose the presence of collinearity (e.g., 
Belsley, Kuh and Welsch 1980; Belsley 1991; Farrar and 
Glauber 1967; Fox 1986; Theil 1971), almost none of this 
research touches upon diagnostics for collinearity when 
fitting models with survey data. One prior, survey-related 
paper on collinearity problems is (Liao and Valliant 2012) 
which adapted variance inflation factors for li near models 
fitted with survey data. 

Suppose the underlying structural model in the super-
population is = .Y X e  The matrix X  is an n p  
matrix of predictors with n  being the sample size;   is a 

1p   vector of parameters. The error terms in the model 
have a general variance structure 2(0, )e R  where 2  
is an unknown constant and R  is a unknown n n  
covariance matrix. Define W  to be the diagonal matrix of 
survey weights. We assu me throughout that the survey 
weights are constructed in such a way that they can be used 
for estimating finite population totals. The survey weighted 
least squares (SWLS) estimator is  

1
SW

ˆ = ( ) ,T T T  1X WX X WY A X WY  

assuming 1= T A X W X  is invertible . Fuller (2002) 
describes the properties of this estimator. The es timator 

SW̂  is model unbiased for   under the model =Y  
X e  regardless of whether 2Var ( ) =M e R  is speci-

fied correctly or not, and is approximately design-unbiased 
for the census par ameter 1= ( )T

U U U
B X X ,T

U UX Y  in the  
finite population U  of N  units. The finite population 
values of the response vector and matrix of predictors are 

1= ( , ..., ) ,T
U NY YY  and 1= ( , ..., )U pX X X  with kX  

being the 1N   vector of values for covariate .k  
The remainder of the paper is o rganized as follo ws. 

Section 2 reviews results on condition numbers and variance 
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decompositions for or dinary least squares. These are ex-
tended to be appropriate for survey estimation in section 3. 
The fourth section gives some numerical illustrations of the 
techniques. Section 5 is a conclusion. In most derivations, 
we use model-based calculations since the forms of t he 
model-variances are useful for understanding the effects of 
collinearity. However, when presenting variance decompo-
sitions, we use estimators that have both model- and design-
based justifications.  
2. Condition indexes and variance decompositions 

      in ordinary least squares estimation  
In this section we briefly review techniques for diag-

nosing collinearity in  ordinary least squares (OLS) esti-
mation based on condition indexes and variance decompo-
sitions. These methods will be extended in section 3 t o 
cover complex survey data.   
2.1 Eigenvalues and eigenvectors of X XT   

When there is an exa ct (perfect) collinear relation in the 
n p  data matrix ,X  we c an find a set of values, =v  

1( , , ),pv v  not all zero, such that  

                  1 1 = , or = .p pv v X X 0 Xv 0  (1) 

However, in practice, when there exists no exact collinearity 
but some near dependencies in the data matrix, it may be 
possible to find one or more non-zero vectors v  such that 

=Xv a  with a 0  but close to .0  Alternatively, we 
might say that a near dependency exists if the length of 
vector ,a ,a   is sm all. To normalize the problem of 
finding the set of ’sv  that makes a   small, we consider 
only v  with unit length, that is, with  = 1.v   Belsley 
(1991) discusses the connection of the eigenvalues and 
eigenvectors of TX X  with the normalized vector v  and 

.a   The minimum length a   is simply the positive 
square root of the smallest eigenvalue of .TX X  The v  that 
produces the a  with minimum length must be the 
eigenvector of TX X  that corresponds to the sm allest 
eigenvalue. As discussed in the next section, the eigenvalues 
and eigenvectors of X  are related to those of TX X  and 
have some advantages when examining collinearity.   
2.2 Singular-value decomposition, condition number 

and condition indexes  
The singular-value decomposition (SVD) of matrix X  is 

very closely allied to the eigensystem of ,TX X  but with its 
own advantages. The n p  matrix X  can be decomposed 
as = ,TX UDV  where = =T T

pU U V V I  and =D  
1diag( , , )p   is th e diagonal matrix of singular values 

(or eigenvalues) of .X  Here, the three components in the 
decomposition are matrices with very special, highly 
exploitable properties: U  is n p  (the same size as )X  
and is column orthogonal; V  is p p  and both row and 
column orthogonal; D  is ,p p  nonnegative and diagonal. 
Belsley et al. (1980) felt that the SVD of X  has several 
advantages over the eigen system of ,TX X  for the sake of 
both statistical usages and computational complexity. For 
prediction, X  is the f ocus not t he cross-product matrix 

TX X  since ˆˆ =Y X  In addition, the lengths a   of the 
linear combinations (1) of X  that relate to collinearity are 
properly defined in terms of the square roots of the 
eigenvalues of ,TX X  which are the singular values of .X  
A secondary consideration, given current computing power, 
is that the singular value decomposition of X  avoids the 
additional computational burden of forming ,TX X  an 
operation involving 2np  unneeded sums and products, 
which may lead to unnecessary truncation error. 

The condition n umber of X  is d efined as ( ) = X  
max min/ ,   where max  and min  are the maximum and 

minimum singular values of .X  Condition indexes are 
defined as max= / .k k    The closer that min  is to zero, 
the nearer TX X  is to being singular. Empirically, if a value 
of   or   exceeds a cutoff value of, say, 10 to 30, two or 
more columns of X  have moderate or strong relations. The 
simultaneous occurrence of several large ’sk  is always 
remarkable for the existence of more than one nea r 
dependency. 

One issue with the SVD is whether the ’sX  should be 
centered around their means. Marquardt (1980) maintained 
that the centering of observations removes nonessential ill 
conditioning. In contrast, Belsley (1984) argues that mean-
centering typically masks the role of the constant term in 
any underlying near-dependencies. A t ypical case is a 
regression with dummy variables. For example, if gender is 
one of the independent variables in a regression and most of 
the cases are male (or female), then the dummy for gender 
can be strongly collinear with the intercept. The discussions 
following Belsley (1984) illustrate the differences of opin-
ion that occur among practitioners (Wood 1984; Snee and 
Marquardt 1984; Cook 1984). Moreover, in linear regres-
sion analysis, Wissmann, Toutenburg and Shalabh (2007) 
found that the degree of multicollinearity with dummy 
variables may be influenced by the choice of reference 
category. In this article, we do not center the ’sX  but will 
illustrate the effect of the choice of reference category in 
section 4. 

Another problem with the condition number is that it is 
affected by the scale of the x  measurements (Steward 
1987). By scaling down any column of ,X  the condition 
number can be made arbitrarily large. This situation is 
known as artificial ill-conditioning. Belsley (1991) suggests 
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scaling each column of the d esign matrix X  using the 
Euclidean norm of each column before computing the 
condition number. This method is implemented in SAS and 
the package perturb of the statistical software R (Hendrickx 
2010). Both use the root mean square of each column for 
scaling as its standard procedure. The condition number and 
condition indexes of the scaled matrix X  are referred to as 
the scaled condition number and scaled condition indexes of 
the matrix .X  Similarly, the variance decomposition pro-
portions relevant to the scaled X  (which will be discu ssed 
in next section) will be called the scaled variance decom-
position proportions.   
2.3 Variance decomposition method  

To assess the extent to which near dependencies (i.e., 
having high condition indexes of X  and )TX X  degrade 
the estimated variance of each regression coefficient, 
Belsley et al. (1980) reinterpreted and extended the work 
of Silvey (1969) by decomposing a c oefficient variance 
into a s um of term s each of which is associated with a 
singular value. In t he remainder of t his section, we 
review the results of ordinary least squares (OLS) under 
the model ( ) =ME Y X  and 2Var ( ) =M nY I  where 

nI  is th e n n  identity matrix. These results will be 
extended to survey weighted least squares in sect ion 3. 
Recall that the model variance-covariance matrix of the 
OLS estimator 1ˆ = ( )T TX X X Y  is 2ˆVar ( ) = ( T

M  X  
1) .X  Using the SVD, ˆ= ,Var ( )T

MX UDV   can be writ-
ten as: 

    
2 1 2 2ˆVar ( ) = [( ) ( )] =T T T T

M
  UDV UDV VD V  (2) 

and the thk  diagonal element in ˆVar ( )M   is the estimated 
variance for the thk  coefficient, ˆ .k  Using (2), ˆVar ( )M k  
can be expressed as: 

                              

2
2

=1 2
ˆVar ( ) = kjp

M k j
j

v
  


 (3) 

where = ( ) .kj p pv V  Let 2 2= / ,kj kj jv  =1= p
k j kj    and 

1 1= ( ) = ( ) ( ),kj p p
 

 Q VD VD  where   is the Hadamard 
(elementwise) product. The variance-decomposition propor-
tions are = / ,jk jk k    which is the proportion of the 
variance of the thk  regression coefficient associated with 
the thj  component of its decomposition in (3). Denote the 
variance decomposition proportion matrix as =  

1( ) = ,T
jk p p


 Q Q  where Q  is the d iagonal matrix with 

the row sums of Q  on the main diagonal and 0 elsewhere. 
If the model is ( ) = ,ME Y X 2 1Var ( ) =M

Y W  and 
weighted least squares is used, then 1

WLS
ˆ = ( )T X WX  

TX WY  and 2 1
WLS

ˆVar ( ) = ( ) .T
M

 X WX  The decom-
position in (3) holds with 1/2=X W X  being decomposed 

as = .TX UDV  However, in survey applications, it will 
virtually never be the case that the covariance matrix of Y  
is 2 1 W  if W  is the matrix of survey weights. Section 3 
covers the more realistic case. 

In the variance decomposition (3), other things being 
equal, a sm all singular value j  can lead to  a large 
component of ˆVar( ).k  However, if kjv  is small too, then 

ˆVar( )k  may not be affected by a small .j  One extreme 
case is when = 0.kjv  Suppose the thk  and thj  columns of 
X  belong to separate orthogonal blocks. Let X  

1 2[ , ]X X  with 1 2 =TX X 0  and let the si ngular-value de-
compositions of 1X  and 2X  be given, respectively, as 

1 1 11 11= TX U D V  and 2 2 22 22= .TX U D V  Since 1U  and 2U  
are the orthogonal bases for the space spanned by the 
columns of 1X  and 2X  respectively, 1 2 =TX X 0  implies 

1 2 =TU U 0  and 1 2[ , ]U U U  is column orthogonal. The 
singular value decomposition of X  is simply 2= ,TX UDU  
with:  

                                     
11

22
=  
  
D 0D 0 D  (4) 

and  

                                     
11

22
= . 
  
V 0V 0 V  (5) 

Thus 12 = .V 0  An analogous result clearly applies to any 
number of mutually orthogonal subgroups. Hence, if all the 
columns in X  are orthogonal, all the = 0kjv  when k j  
and = 0kj  likewise. When kjv  is nonzero, this is a signal 
that predictors k  and j  are not orthogonal. 

Since at least one kjv  must be nonzero in (3), this implies 
that a high proportion of any variance can be associated 
with a large singular value even when there is no 
collinearity. The standard approach is to check a high 
condition index associated with a large proportion of the 
variance of two or more coefficients when diagnosing 
collinearity, since there must be two or more columns of X  
involved to make a near dependency. Belsley et al. (1980) 
suggested showing the matrix   and condition indexes of 
X  in a var iance decomposition table as b elow. If two or 
more elements in the thj  row of matrix   are relatively 
large and its associated condition index j  is large too, it 
signals that near dependencies are influencing regression 
estimates.   

Condition Proportions of variance 
Index 1

ˆVar ( )M   2
ˆVar ( )M     ˆVar ( )M p  

1  11  12    1p  

2  21  22    2 p  

     
p  1p  2p    pp     
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3. Adaptation in survey-weighted least squares  
3.1 Condition indexes and variance decomposition 

proportions  
In survey-weighted least squares (SWLS), we are m ore 

interested in the collinear relations among the columns in 
the matrix 1/2=X W X  instead of ,X  since SW

ˆ = ( TX  
1) .X XY    Define the singular value decomposition of X  to 

be = ,TX UDV  where ,U ,V  and D  are usually different 
from the ones of ,X  due to the unequal survey weights. 

The condition n umber of X  is d efined as ( ) = X  
max min/ ,   where max  and min  are maximum and mini-

mum singular values of .X  The condition number of X  is 
also usually different from the condition number of the data 
matrix X  due to unequal survey weights. Condition indexes 
are defined as  

                        max= / , = 1, ...,k k k p    (6) 

where k  is one of the singular values of .X  The scaled 
condition indexes and condition numbers are the condition 
indexes and condition numbers of the scaled .X  

Based on the extrema of the ratio of quadratic forms (Lin 
1984), the condition number ( ) X  is bounded in the range 
of:  

                   

1/21/2
maxmin

1/2 1/2
max min

( ) ( ) ( ),ww

w w
    X X X  (7) 

where minw  and maxw  are the minimum and maximum 
survey weights. This expression indicates that if the survey 
weights do not vary too much, the conditio n number in 
SWLS resembles the one in OLS. Ho wever, in a sample 
with a wide range of survey weights, the condition number 
can be very different between SWLS and OLS. W hen 
SWLS has a large condition number, OLS might not. In the 
case of exact linear dependence among the columns of ,X  
the columns of X  will also  be linearly dependent. In this 
extreme case at least one eigenvalue of X  will be zero, and 
both ( ) X  and ( ) X  will be infinite. As in OLS, large 
values of   or of the ’sk  of 10 or more may signal that 
two or m ore columns of X  have moderate to strong 
dependencies. 

The model variance of the SWLS parameter estimator 
under a model with 2Var ( ) =M e R  is:  

  

2 1 1
SW

2 1

ˆVar ( ) = ( ) ( )
= ( ) ,

T T T
M

T

 





X WX X WRWX X WX
X X G 

  
(8)

 

where  

              
1= ( ) = ( )T T

ij p pg 
G X WRWX X WX  (9) 

is the misspecification effect (MEFF) that represents the 
inflation factor needed to correct standard results for the 
effect of intracluster correlation in clustered survey data and 
for the f act that 2Var ( ) =M e R  and not 2 1 W  (Scott 
and Holt 1982). 

Using the SVD of ,X  we can rewrite SW
ˆVar ( )M   as  

                         
2 2

SW
ˆVar ( ) = .T

M
 VD V G  (10) 

The thk  diagonal element in SW
ˆVar ( )M   is the estimated 

variance for the thk  coefficient, ˆ .k  Using (10), ˆVar ( )M k  
can be expressed as:  

                         

2
=1 2

ˆVar ( ) = kjp
M k j kj

j

v
   


 (11) 

where =1= .p
kj i ij ikv g   if 1= ,R W  then = ,pG I  

= ,kj kjv  and (11) reduces to (3). However, the situation is 
more complicated when G  is not the identity matrix, i.e., 
when the complex design affects the variance of an 
estimated regression coefficient. If predictors k  and j  are 
orthogonal, = 0kjv  for k j  and the variance in (11) 
depends only on the thk  singular value and is unaffected by 

’sijg  that are non-zero. If predictor k  and several ’sj  are 
not orthogonal, then kj  has contributions from all of those 
eigenvectors and from the off-diagonal elements of the 
MEFF matrix .G  The term kj  then measures both non-
orthogonality of ’sx  and effects of the complex design. 

Consequently, we can  define variance deco mposition 
proportions analogous to those for OLS bu t their 
interpretation is less straightforward. Let 2= / ,kj kj kj jv    

=1= p
k j kj    and 2= ( ) = ( ) ( ) .T T

kj p p


 Q VD V G  The 
variance-decomposition proportions are = / ,jk jk k    
which is the proportion of the variance of the thk  regression 
coefficient associated with the thj  component of its decom-
position in (11). Denote the variance decomposition pro-
portion matrix as  

                            1= ( ) = ,T
jk p p


 Q Q  (12) 

where Q  is the diagonal matrix with the row sums of Q  on 
the main diagonal and 0 elsewhere. The interpretation of the 
proportions in (12) is not as clear-cut as for OLS because 
the effect of the MEFF matrix. Section 3.2 discusses the 
interpretation in more detail in the context of stratified 
cluster sampling. 

Analogous to the method for OLS regression, a variance 
decomposition table can be formed like the one at the end of 
section 2. When two or m ore independent variables are 
collinear (or “nearly dependent”), one singular value should 
make a large contribution to the variance of the parameter 
estimates associated with those variables. For exam ple, if 
the proportions 31  and 32  for the variances of SW1̂  and 
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SW2̂  are large, this would say that the third singular value 
makes a la rge contribution to both variances and that the 
first and second predictors in the regression are, to some 
extent, collinear. As shown in section 2.3, when the thk  and 

thj  columns in X  are orthogonal, = 0kjv  and the thj  sin-
gular value’s decomposition proportion jk  on ˆVar( )k  
will be 0. 

Several special cases are worth  noting. If 1= R W  as 
assumed in WLS, then = .G I  The variance decomposition 
in (11) has the same form as (2) in OLS. However, having 

1= R W  in survey data would be unusual since survey 
weights are not typically com puted based on the v ariance 
structure of a model. Note that V  is still different from the 
one in OLS and is one component of the SVD of X  instead 
of .X  Another special case here is w hen =R I  and t he 
survey weights are equal, in which case the OLS results can 
be used. However, when the survey weights are unequal, 
even when = ,R I  the variance decomposition in (11) is 
different from (2) in OLS since .G I  In the next section, 
we will con sider some special models that take the popu-
lation features such as clusters and strata into account when 
estimating this variance decomposition.   
3.2 Variance decomposition for a model with 

stratified clustering  
The model variance of SW̂  in (8) contains the unknown 

R  that must be estimated. In this section, we present an 
estimator for SW̂  that is appropriate for a model with 
stratified clustering. The variance estimator has both model-
based and design-based justification. Suppose that in a 
stratified multistage sampling design, there are strata 

= 1, ...,h H  in the population, clusters = 1, ..., hi N  in 
stratum h  and units = 1, ..., hit M  in cluster .hi  We select 
clusters = 1, ..., hi n  in stratum h  and units = 1, ..., hit m  
in cluster .hi  Denote the set of sample clusters in stratum h  
by hs  and the sample of units in cluster hi  as .his  The total 
number of sample units in stratum h  is = ,

hi sh him m  and 
the total in the sample is =1= .H

h hm m  Assume that clusters 
are selected with varying probabilities and with replacement 
within strata and independently between strata. The model 
we consider is:  

( ) =

= 1, , , = 1, , , = 1, ,

Cov ( , ) = 0

where = ,

Cov ( , ) = 0 .

T
M hit hit

h hi

M hit hi t

T
hit hit hit

M hit h i t

E Y

h H i N t M

Y i i

h h

 

  

 

  

  

x

x

  





 

(13)

 

Units within each cluster are assumed to be correlated but 
the particular form of the covariances does not  have to be 

specified for this analysis. The estimator SW̂  of t he 
regression parameter can be written as:  

                     

1
SW

=1

ˆ = ( )
h

H
T T

hi hi hi
h i s




  X X X W Y   (14) 

where hiX  is the him p  matrix of covariates for sample 
units in cluster ,hi = diag( ), ,hi t hiw t sW  is the diagonal 
matrix of survey weights for units in cluster hi  and hiY  is 
the 1him   vector of response variables in cluster .hi  The 
model variance of SW̂  is:  

                        
1

SW
ˆVar ( ) = ( )T

M st
X X G   (15) 

where  

         

1

=1

1

=1

= ( )

= ( )

h

H
T T

st hi hi hi hi hi
h i s

H
T T
h h h h h

h







 
 
 
 
 
 

 



G X W R W X X X

X W R W X X X

 

 
 

(16)
 

with = Var ( ), = diag( ),hi M hi h hiR Y W W  and =hR  
Blkdiag( ), = diag( ),hi h hiR W W 1 2 ,= ( , ,..., ),

h

T T T T
h h h h nX X X X  

.hi s  Expression (16) is a special case of (9) with 
1 2= ( , , ..., ),T T T T

HX X X X  where hX  is the hm p  matrix 
of covariates for sample units in stratum ,h =W  
diag( ),hiW  for = 1, ...,h H  and hi s  and =R
Blkdiag( ).hR  

Based on the development in Scott and Holt (1982, section 
4), the MEFF matrix stG  can be rewritten for a special case 
of hR  in a wa y that will make the decomposition 
proportions in (12 ) more understandable. Consider the 
special case of (13) with  

2 2Cov ( ) = (1 )
hi hi hi

T
M hi m m m     e I 1 1  

where 
himI  is the hi him m  identity matrix and 

him1  is a 
vector of him  1’s. In that case,  

           

2

2

= (1 )

h

T T
h h h h h h h h

T
hi Bhi hi Bhi

i s

m


 

 

X W R W X X W X

X W X
 

where 1=
hi hi

T
Bhi hi m m himX 1 1 X . Suppose that the sample is 

self-weighting so that = .
hihi mwW I  After so me simplifi-

cation, it follows that  

= [ ( ) ]st p pw   G I M I  

where pI  is t he p p  identity matrix and =M  
1

=1( )( ) .
h

T TH
h i s hi Bhi Bhim 

  X X X WX  Thus, if the sample is 
self-weighting and   is v ery small, then st pwG I  and 
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SW
ˆVar ( )M   in (15) will be approximately the same as the 

OLS variance. If so, the SWLS variance decomposition pro-
portions will be similar to the OLS proportions. In regres-
sion problems,   often is small since it is the correlation of 
the errors, = ,T

hit hit hitY  x   for different units rather than 
for ’s.hitY  This is relat ed to the ph enomenon that design 
effects for regression coefficients are often smaller than for 
means-a fact first noted by Kish and Frankel (1974). In 
applications where   is larger, the variance decomposition 
proportions in (12 ) will still be useful in identifying colli-
nearity although they will be affected by departures of the 
model errors from independence. 

Denote the cluster-level residuals as a vector, =hi hi e Y  
SW

ˆ .hiX   The estimator of (15) that we consider was origi-
nally derived from design-based considerations. A lineariza-
tion estimator, appropriate when clusters are selected with 
replacement, is:  

                          
1

SW
ˆ ˆvar ( ) = ( )T

L L
X X G   (17) 

with the estimated misspecification effect as  

1

=1

ˆ ˆ= ( ) =

( )( ) ( ) ,
1

h

L ij p p

H
T Th

hi h hi h
h i sh

g

n

n



    



 
   

 

G

z z z z X X 
 
(18)

 

where = 1 / i sh h hin 
z z  and = T

hi hi hi hi
z X W e  with =hie  

SW
ˆ ,hi hiY X   and the variance-covariance matrix R  can 

be estimated by 

=1

1ˆ = Blkdiag( ) .
1

H T Th
hi hi h hh

h h

n

n n

 
   

R e e e e  

Expression (17) is used by the Stata and SUDAAN pack-
ages, among others. The estimator SW

ˆvar ( )L   is consistent 
and approximately design-unbiased under a d esign where 
clusters are selected with replacement (Fuller 2002). The 
estimator in (17) is also an approximately model-unbiased 
estimator of (15) (see Liao 2 010). Since the estimator 

SW
ˆvar ( )L   is also currently available in software packages, 

we will use it in the empirical work in section 4. 
Using (12) derived in section 2, the variance decomposi-

tion proportion matrix   for SW
ˆvar ( )L   can then be 

written as  

                              
1= ( ) = T

jk p p L L


 Q Q  (19) 

with 2 ˆ= ( ) = ( ) ( )T T
L kj p p L


 Q VD V G  and LQ  is the 

diagonal matrix with the row su ms of LQ  on the m ain 
diagonal and 0 elsewhere. 

4. Numerical illustrations  
In this section, we will illustrate the collinearity measures 

described in section 3 and investigate their behaviors using 
the dietary intake data from 2007-2008 National Health and 
Nutrition Examination Survey (NHANES).   
4.1 Description of the data  

The dietary intake data are used to estimate the types and 
amounts of foods and beverages consumed during the 24-
hour period prior to the interview (midnight to midnight), 
and to estimate intakes of energy, nutrients, and other food 
components from those foods and beverages. NHANES 
uses a co mplex, multistage, probability sampling design; 
oversampling of certain population subgroups is done to 
increase the reliability and precision of health status indi-
cator estimates for these groups. Among the respondents 
who received the in-person interview in the mobile exami-
nation center (MEC), around 94% provided complete di-
etary intakes. The survey weights were constructed by 
taking MEC sample weights and further adjusting for the 
additional nonresponse and the differential allocation by day 
of the week for the dietary intake data collection. These 
weights are more variable than the MEC weights. The data 
set used in our st udy is a sub set of 2007-2008 data com-
posed of female respondents aged 26 to 40. Observations 
with missing values in the selected variables are excluded 
from the s ample which finally contains 672 complete re-
spondents. The final  weights in our sample range from 
6,028 to 330,067, with a ratio of 55:1. The U.S. National 
Center for Health Statistics recommends that the design of 
the sample is approximated by the st ratified selection with 
replacement of 32 PSUs from 16 strata, with 2 PSUs within 
each stratum.  
4.2 Study one: Correlated covariates  

In the first empirical study, a linear regression model of 
respondent’s body mass index (BMI) was considered. The 
explanatory variables considered included two demographic 
variables, respondent’s age a nd race (Bl ack/Non-black), 
four dummy variables for whether the respon dent is on a 
special diet of any kind, on a low-calorie diet, on a low-fat 
diet, and on a low-carbohydrate diet (when he/she is on diet, 
value equals 1, otherwise 0), and ten daily total nutrition 
intake variables, consisting of total calories (100kcal), pro-
tein (100gm), carbohydrate (100gm), sugar (100gm), dietary 
fiber (100gm), alcohol (100gm), total fat (1 00gm), total 
saturated fatty acids (100gm), total m onounsaturated fatty 
acids (100gm), and t otal polyunsaturated fatty acids 
(100gm). The correlation coefficients among these variables 
are displayed in Table 2. Note that the correlations among 
the daily total nutrition intake variables are often high. For 



Survey Methodology, December 2012 195 
 

 
Statistics Canada, Catalogue No. 12-001-X 

example, the correlations of the total fat intakes with total 
saturated fatty acids, total monounsaturated fatty acids and 
total polyunsaturated fatty acids are 0.85, 0.97 and 0.93. 

Three types of regr essions were fitted for the s elected 
sample to demonstrate different diagnostics. More details 
about these three regression types and their diagnostic statis-
tics are displayed in Table 1.  
TYPE1: OLS regression with estimated 2;  the diagnostic 
statistics are obtained using the standard methods reviewed 
in section 2;  
TYPE2: WLS regression with estimated 2  and assuming 

1= ;R W  the scaled condition indexes are estimated using 
(6) and the scaled variance decomposition proportions are 
estimated using (12). With 1= ,R W  these are the 
variance decompositions that will be produced by standard 
software using WLS and specifying the weights to be t he 
survey weights;  
TYPE3: SWLS with estimated ˆ ;R  the scaled condition 
indexes are es timated using (6); the scaled variance 
decomposition proportions are estimated using (12).  

Their diagnostic statistics, including the scaled condition 
indexes and v ariance decomposition proportions are 
reported in Tables 3, 4 and 5, respectively. To make the 

tables more readable, only the proportions that are larger 
than 0.3 are shown. Proportions that are less th an 0.3 are 
shown as dots. Note that some terms in decomposition (12) 
can be n egative. This leads to the possibility of some 
“proportions” being greater than 1. This occurs in five cases 
in Table 5. Belsley et al. (1980) suggest that a co ndition 
index of 10 signals that collinearity has a moderate effect on 
standard errors; an index of 100 would indicate a serious 
effect. In this study, we consider a scaled  condition index 
greater than 10 to be relatively large, and ones greater than 
30 as la rge and remarkable. Furthermore, the large scaled 
variance-decomposition proportions (greater than 0.3) 
associated with each large scaled  condition index will be 
used to identify those variates that are involved in a near 
dependency. The intracluster correlation of the residuals is 
shown in the last row of Table 6 under the column labeled 
“Original Model”. In the model used fo r Tables 3-5, =  
0.0366 as estimated from a model with random effects for 
clusters. As noted in section 3.2, when   is small and the 
sample is self-weighting, the SWLS decomposition propor-
tions can be interpreted in the same way as tho se of OLS. 
Although the NHANES sam ple does not have equal 
weights,   is small in this example and the decomposition 
proportions should still provide useful information. 

 
 
 
 
 
Table 1 
Regression models and their collinearity diagnostic statistics used in this experimental study 
 

Type Regression 
Method 

Weight 
matrix 

Wa  

   
ˆvar( )  ˆvar( )k  Matrix for 

Condition 
Indexesb 

Variance Decomposition  
Proportion jk  

TYPE1 OLS I     
2 1ˆ ( )T  X X  2

22
=1 2

k jp
j

j

u
 


   

c 
TX X  2 2

2 2
=12 2/k j k jp

j

j j

u u


 
 

TYPE2 WLS W  
   

2 1ˆ ( )T  X WX  2
22

=1 2
k jp

j

j

u
 


   

d 
TX WX  2 2

2 2
=12 2/k j k jp

j

j j

u u


 
 

TYPE3 SWLS W  
   

2 1 1ˆˆ ( ) ( )T T T  X WX X WRWX X WX  2 =1 22
=1 2

ˆp
k j i i k i jp

j

j

u g u
 


   

e

TX WX  2 =1 2 2 =1 2
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ˆ ˆ
/

p p
k j i i k i j k j i i k i jp

j

j j

u g u u g u 


 

   

   
=1

1ˆ = Blkdiag( )
1

H T Th
hi hi h hh

h h

n

n n

 
   

R e e e e
   

 
a In all the regression models, the parameters are estimated by: 1ˆ = ( ) .T TX WX X WY  
b The eigenvalues of this matrix will be used to compute the Condition Indexes for the corresponding regression model. 
c The terms 2k ju  and j  are from the singular value decomposition of the data matrix .X  
d The terms 2k ju  and j  are from the singular value decomposition of the weighted data matrix 1/2= .X W X  
e The terms 2k ju  and j  are from the singular value decomposition (SVD) of the weighted data matrix .X  The term ˆ

ikg  is the unit 
element of misspecification effect matrix ˆ .G  
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In Tables 3, 4 and 5, the weighted regression methods, 
WLS and SWLS, used the survey-weighted data matrix X  
to obtain the condition indexes while the unweighted 
regression method, OLS, used the data m atrix .X  The 
largest scaled condition index in WLS and SWLS is 566, 
which is slightly smaller than the one in OLS, 581. Both of 
these values are much larger than 30 and, thus, signal a 
severe near-dependency among the predictors in all three 
regression models. Such large condition numbers imply that 
the inverse of the design matrix, ,TX WX  may be nu-
merically unstable, i.e., small changes in the x  data could 
make large changes in the elements of the inverse. 

The values o f the decomposition proportions for OLS 
and WLS are  very similar and lead to the same predictors 
being identified as potentially co llinear. Results for SWLS 
are somewhat different as sketched below. In O LS and 
WLS, six daily total nutrition intake variables-calorie, 
protein, carbohydrate, alcohol, dietary fiber and total fat-are 
involved in the dominant near-dependency that is associated 
with the largest scaled condition index. Four daily fat intake 
variables, total fat, total saturated fatty acids, total monoun-
saturated fatty acids and total polyunsaturated fatty acids, 
are involved in the secondary near-dependency that is 
associated with the second largest scaled condition index. A 
moderate near-dependency between intercept and age is also 
shown in all three tables. The associated scaled condition 
index is equal to 38 in OLS and 37 in WLS and SWLS. 
However, when SWLS is u sed, sugar, total saturated fatty 
acids and total polyunsaturated fatty acids also appear to be 
involved in the dominant near-dependency as sho wn in 
Table 5. While, only three daily fat intake variables, total 
saturated fatty acids, total monounsaturated fatty acids and 
total polyunsaturated fatty acids, are invo lved in the 
secondary near-dependency that i s associated with the 
second largest scaled condition index. Thus, w hen OLS or 
WLS is used, the impact of near-dependency among sugar, 
total saturated fatty acids, total polyunsaturated fatty acids 
and the six daily total nutrition intake variables i s not as 
strong as the ones in SWLS. If conventional OLS or WLS 
diagnostics are used for SWLS, this near-dependency might 
be overlooked. 

Rather than using the scaled condition indexes and 
variance decomposition method (in Tables 3, 4 and 5), an 
analyst might attempt to identify collinearities by examining 
the unweighted correlation coefficient matrix in Table 2. 
Although the correlation coefficient matrix shows that 
almost all the daily total nutrition intake variables are highly 
or moderately pairwise correlated, it cannot be used to 

reliably identify the near-depend encies among these 
variables when used in a regression. For e xample, the 
correlation coefficient between “on any diet” and “on low-
calorie diet” is relatively large (0.73). This near dependency 
is associated with a scaled cond ition index equal to 11 
(larger than 10, but less than the cutoff of 30) in OLS and 
WLS (shown in Table 3 and 4) and is associated with a 
scaled condition index equal to 2 (less than 10) in SWLS 
(shown in Table 5). The impact of this near dependency 
appears to be not very harmful not matter which regression 
method is us ed. On the other hand, alcohol is weakly 
correlated with all the daily total nutrition intake variables 
but is highly involved in the dominant near-dependency 
shown in the last row of Tables 3-5. 

After the collinearity patterns are diagnosed, the common 
corrective action would be to drop the correlated variables, 
refit the model and reexamine standard errors, collinearity 
measures and other diagnostics. Omitting ’sX  one at a time 
may be a dvisable because of t he potentially complex 
interplay of explanatory variables. In this example, if the 
total fat intake is one o f the key variables that an analyst 
feels must be kept, sugar might be dropped first followed by 
protein, calorie, alcohol, carbohydrate, total fat, dietary 
fiber, total monounsaturated fatty acids, total polyun-
saturated fatty acids and total saturated fatty acids. Other 
remedies for collinearity could be to transform the data or 
use some specialized techniques such as ridge regression 
and mixed Bayesian modeling, which require extra (prior) 
information beyond the scope of most research and 
evaluations. 

To demonstrate how the col linearity diagnostics can 
improve the regression results in this example, Table 6 
presents the SWLS regression analysis output of the original 
models with all the explanatory variables an d a reduced 
model with fewer explanatory variables. In the  reduced 
model, all of  the dietary inta ke variables are eliminated 
except total fat intake. After the number of correlated 
offending variables is reduced, the standard error of total fat 
intake is only the one forty-sixth of its standard error in the 
original model. The total  fat intake becomes significant in 
the reduced model. The reduction of cor related variables 
appears to have substantially improved the accuracy of 
estimating the impact of total fat intake on BMI. Note that 
the collinearity diagnostics do not provide a u nique path 
toward a final model. Different analysts may make different 
choices about whether particular predictors should be 
dropped or retained. 
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Table 2 
Correlation coefficient matrix of the data matrix X  
 

   age black on  
any 
diet 

on  
low-

calorie 
diet 

on 
low-
fat 
diet 

on 
low-
carb 
diet a

calorie protein Carbo-
hydrate 

sugar fiber alcohol total.  
fat 

sat. 
fat 

mono. 
fat 

poly. 
fat 

age  1                
black  .b 1               
on any diet  . . 1              
on low-calorie diet  . . 0.87 c 1             
on low-fat diet  . . . . 1            
one low-carb diet  . . . . . 1           
calorie  . . . . . . 1          
protein  . . . . . . 0.75 1         
carb  . . . . . . 0.84 0.45 1        
sugar  . . . . . . 0.58 . 0.84 1       
fiber  . . . . . . 0.57 0.52 0.54 . 1      
alcohol  . . . . . . . . . . . 1     
total.fat  . . . . . . 0.86 0.72 0.54 . 0.48 . 1    
sat.fat d  . . . . . . 0.74 0.56 0.47 . 0.46 . 0.85 1   
mono.fat e  . . . . . . 0.83 0.68 0.51 . 0.46 . 0.97 0.82 1  
poly.fat f  . . . . . . 0.81 0.71 0.51 . 0.43 . 0.93 0.63 0.87 1 
 

a The term “carb” stands for carbohydrate. 
b Correlation coefficients less than 0.3 are omitted in this table. 
c Correlation coefficients larger than 0.3 are italicized in this table. 
d Total Saturated Fatty Acids. 
e Total Monounsaturated Fatty Acids. 
f Total Polyunsaturated Fatty Acids. 
 
Table 3 
Scaled condition indexes and variance decomposition proportions: Using TYPE1: OLS 
 

Scaled 
Condition Index 

Scaled Proportion of the Variance of   

Intercept  Age  Black  on any Diet  on Low-
Calorie Diet 

on Low-fat 
Diet  

on Low-carb 
Diet  

Calorie  Protein  

1   .a   .   .  . . .  .   .  . 
2   .   .   .  . . .  .   .  . 
3   .   .   .  . . . 0.574   .  . 
3   .   .   .  . . .  .   .  . 
3   .   .   .  . . 0.379  .   .  . 
4   .   .   0.794 . . .  .   .  . 
5   .   .   .  . . .  .   .  . 
6   .   .   .  . . .  .   .  . 
8   .   .   .  . . .  .   .  . 
9   .   .   .  . . .  .   .  . 

11   .   .   .  0.842 0.820 .  .   .  . 
12   .   .   .  . . .  .   .  . 
22   .   .   .  . . .  .   .  . 
26   .   .   .  . . .  .   .  . 
38   0.970   0.960   .  . . .  .   .  . 
157   .   .   .  . . .  .   .  . 
581   .   .   .  . . .  .   0.993 0.966 

Scaled 
Condition Index 

Carbohydrate  Sugar  Dietary Fiber Alcohol  Total Fat  Sat.fat b  Mono.fat c  Poly.fat d  

1   .   .   .  . . .  .   .  
2   .   .   .  . . .  .   .  
3   .   .   .  . . .  .   .  
3   .   .   .  . . .  .   .  
3   .   .   .  . . .  .   .  
4   .   .   .  . . .  .   .  
5   .   .   .  . . .  .   .  
6   .   .   .  . . .  .   .  
8   .   .   .  . . .  .   .  
9   .   .   .  . . .  .   .  

11   .   .   .  . . .  .   .  
12   .   .   .  . . .  .   .  
22   .   .   .  . . .  .   .  
26   .   0.633   .  . . .  .   .  
38   .   .   .  . . .  .   .  
157   .   .   .  . 0.304 0.866 0.890   0.904 
581   0.988   .   0.482 0.986 0.696 .  .   .  

 

a The scaled variance decomposition proportions smaller than 0.3 are omitted in this table. 
b Total Saturated Fatty Acids. 
c Total Monounsaturated Fatty Acids. 
d Total Polyunsaturated Fatty Acids. 
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Table 4 
Scaled condition indexes and variance decomposition proportions: Using TYPE2: WLS 
 

Scaled 
Condition Index 

Scaled Proportion of the Variance of   

Intercept  Age  Black  on any Diet  on Low-
Calorie Diet 

on Low-fat 
Diet  

on Low-carb 
Diet  

Calorie  Protein  

1   .a   .   .  . . .  .   .  . 
2   .   .   .  . . .  .   .  . 
3   .   .   .  . . . 0.609   .  . 
3   .   .   .  . . .  .   .  . 
3   .   .   .  . . 0.347  .   .  . 
4   .   .   0.711 . . .  .   .  . 
5   .   .   .  . . .  .   .  . 
7   .   .   .  . . .  .   .  . 
8   .   .   .  . . .  .   .  . 

10   .   .   .  . . .  .   .  . 
11   .   .   .  0.902 0.878 .  .   .  . 
13   .   .   .  . . .  .   .  . 
21   .   .   .  . . .  .   .  . 
26   .   .   .  . . .  .   .  . 
37   0.959   0.940   .  . . .  .   .  . 
165   .   .   .  . . .  .   .  . 
566   .   .   .  . . .  .   0.992 0.963

Scaled 
Condition Index 

Carbohydrate  Sugar  Dietary Fiber Alcohol  Total Fat  Sat.fat b  Mono.fat c  Poly.fat d  

1   .   .   .  . . .  .   .  
2   .   .   .  . . .  .   .  
3   .   .   .  . . .  .   .  
3   .   .   .  . . .  .   .  
3   .   .   .  . . .  .   .  
4   .   .   .  . . .  .   .  
5   .   .   .  . . .  .   .  
7   .   .   .  . . .  .   .  
8   .   .   .  . . .  .   .  

10   .   .   .  . . .  .   .  
11   .   .   .  . . .  .   .  
13   .   .   .  . . .  .   .  
21   .   .   .  . . .  .   .  
26   .   0.630   .  . . .  .   .  
37   .   .   .  . . .  .   .  
165   .   .   .  . 0.342 0.871 0.909   0.919
566   0.987   .   0.486 0.981 0.658 .  .   .  

 
a The scaled variance decomposition proportions smaller than 0.3 are omitted in this table. 
b Total Saturated Fatty Acids. 
c Total Monounsaturated Fatty Acids. 
d Total Polyunsaturated Fatty Acids.  
Table 5 
Scaled condition indexes and variance decomposition proportions: Using TYPE3: SWLS 
 

Scaled 
Condition Index 

Scaled Proportion of the Variance of   

Intercept  Age  Black  on any Diet  on Low-
Calorie Diet 

on Low-fat 
Diet  

on Low-carb 
Diet  

Calorie  Protein  

1   .a   .   .  . . .  .   .  . 
2   .   .   .  0.717 1.278 0.553  .   .  . 
3   .   .   .  . . . 0.697   .  . 
3   .   .   .  . . .  .   .  . 
3   .   .   .  . . .  .   .  . 
4   .   .  .  . . .  .   .  . 
5   .   .   .  . . .  .   .  . 
7  0.766  1.686  0.461 . . .  .   .  . 
8   .   .   .  . . .  .   .  . 

10   .   .   .  . . .  .   .  . 
11   .   .   .  . . .  .   .  . 
13   .   .   .  . . .  .   .  . 
21   .   .   .  . . .  .   .  . 
26   .   .   .  . . .  .   .  . 
37   .   .    .  . . .  .   .  . 
165   .   .   .  . . .  .   .  . 
566  0.318   .   .  . . .  .   1.095 1.190

 
a The scaled variance decomposition proportions smaller than 0.3 are omitted in this table. 
b Total Saturated Fatty Acids. 
c Total Monounsaturated Fatty Acids. 
d Total Polyunsaturated Fatty Acids. 
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Table 5 (continued) 
Scaled condition indexes and variance decomposition proportions: Using TYPE3: SWLS 
 

Scaled 
Condition Index 

Scaled Proportion of the Variance of   

Carbohydrate  Sugar  Dietary Fiber Alcohol  Total Fat  Sat.fat b  Mono.fat c  Poly.fat d  
1   .   .   .  . . .  .   .  
2   .   .   .  . . .  .   .  
3   .   .   .  . . .  .   .  
3   .   .   .  . . .  .   .  
3   .   .   .  . . .  .   .  
4   .   .   .  . . .  .   .  
5   .   .   .  . . .  .   .  
7   .   .   .  . . .  .   .  
8   .   .   .  . . .  .   .  

10   .   .   .  . . .  .   .  
11   .   .   .  . . .  .   .  
13   .   .   .  . . .  .   .  
21   .   .   .  . . .  .   .  
26   .   0.379   .  . . .  .   .  
37   .   .   .  . . .  .   .  
165   .   .   .  . . 0.651 0.749  0.615
566   1.008  1.509   0.740 1.036 0.805 0.486  .  0.390

 
a The scaled variance decomposition proportions smaller than 0.3 are omitted in this table. 
b Total Saturated Fatty Acids. 
c Total Monounsaturated Fatty Acids. 
d Total Polyunsaturated Fatty Acids. 
  
Table 6 
Regression analysis output using TYPE3: SWLS 
 

     Original Model Reduced Model
Variable  Coefficient SEa Coefficient SE
Intercept       24.14***b 2.77     24.20*** 2.69
Age  0.06 0.08 0.06 0.08
Black      3.19*** 1.04     3.67*** 0.98
on any Dietc  1.79 1.52 1.28 1.80
on Low-calorie Diet     4.09** 1.50    4.59** 1.69
on Low-fat Diet  3.67 2.86 3.87 3.76
on Low-carb Diet  0.46 3.51 0.87 3.86
Calorie  -0.88 2.36  
Protein  7.05 9.59  
Carbohydrate  3.69 9.62  
Sugar  -0.31 1.11  
Dietary Fiber  -14.52* 5.89  
Alcohol  2.09 16.47  
Total Fat  29.34 31.37  1.47* 0.68
Total Saturated Fatty Acids  -15.90 20.18  
Total Monounsaturated Fatty Acids  -22.40 23.01  
Total Polyunsaturated Fatty Acids  -27.69 21.10  

Intracluster Coefficient    0.0366  0.0396  
 

a standard error. 
b p-value: *, 0.05; **, 0.01; ***, 0.005. 
c The reference category is “not being on diet” for all the on-diet variables here. 

 
 
 

4.3 Study two: Reference level for categorical 
variables  

As noted earlier, u sing non-survey data, dummy vari-
ables can also play an important role as a possible source for 
collinearity. The choice of reference level for a categorical 
variable may affect the degree of collinearity in the data. To 
be more specific, choosing a category that has a low 
frequency as the reference and omitting that level in order to 

fit the model may give rise to collinearity with the intercept 
term. This phenomenon carries over to survey data analysis 
as we now illustrate. 

We employed the four on-diet dummy variables used in 
the previous study, which we denote this section as “on any 
diet” (DIET), “on low-calorie diet” (CALDIET), “on low-
fat diet” (FATDIET) and “one low-carbohydrate diet” 
(CARBDIET). The model considered here is:  
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0 black

TOTAL.FAT

DIET

CALDIET

FATDIET

CARBDIET

BMI = * black

* TOTAL.FAT

* DIET

* CALDIET

* FATDIET

* CARBDIET

hit hit

hit

hit

hit

hit

hit hit

  

 

 

 

 

   

 

(20)

 

where subscript hit  stands for the tht  unit in the selected 
PSU ,hi  black is the dummy variable of black (black = 1 
and non-black = 0), and TOTAL.FAT  is the variable of 
daily total fat i ntake. According to the survey-weighted 
frequency table, 15.04% of the respo ndents are “on an y 
diet”, 11.43% of them are “on low-calorie diet”, 1.33% of 
them are “on low-fat diet” and 0.47% of them are “on low-
carbohydrate diet”. Being on a diet is, then, relatively rare in 
this example. If we choose the majority level, “not being on 
the diet”, as the reference category for all the four on-diet 
dummy variables, we expect no severe collinearity between 
dummy variables and the intercept, because most of values 
in the dummy variables will be zero. However, when fitting 
model (20), assume that an analyst is interested to see the 
impact of “not on any diet” on  respondent’s BMI and 
reverses the reference level of variable DIET in model (20) 
into “being on the diet”.  This change may cause a near 
dependency in the m odel because the column in X  for 
variable DIET will nearly equal the column of ones for the 

intercept. The following empirical study will illustrate the 
impact of this change on the regression coefficient esti-
mation and how we should diagnose the severity of the 
resulting collinearity. 

Table 7 and 8 present the regression analysis output of 
the model in (20) using the three regression types, OLS, 
WLS and SWLS, listed in Table 1. Table 7 is modeling the 
effects of on-diet factors on BMI by treating “not being on 
the diet” as the ref erence category for all the four on-diet 
variables. While Table 8 changes the reference level of 
variable DIET fro m “not on an y diet” into “On any diet” 
and models the effect of “not on any diet” on BMI. The 
choice of reference level effects the sign of the es timated 
coefficient for variable DIET but  not its absolute value or 
standard error. The size of the estimated intercept and its SE 
are different in Tables 7 and 8, but the estimable functions, 
like predictions, will of course, be the same with either set 
of reference lev els. The SE of the in tercept is about three 
times larger when “on any diet” is the reference level for 
variable DIET (Table 8) than when it is not (Table 7). 

When choosing “not being on any diet” as the reference 
category for DIET in Table 9, the scaled condition indexes 
are relatively small and do not signify any remarkable near-
dependency regardless of the type of regression. Only the 
last row for the largest condition index is printed in Tables 9 
and 10. Often, the reference category for a categorical pre-
dictor will be chosen to be analytically meaningful. In this 
example, using “not being on any diet” would be logical. 

 
Table 7 
Regression analysis output: When “not on any diet” is the reference category for DIET variable in the model 
 

Regression Type  Intercept black total.fat on any diet on low-calorie diet on low-fat diet on low-carb diet 
TYPE1       27.22***a      3.20*** 0.95 3.03 1.75 2.75 -1.48 
OLS  (0.61)b (0.70) (0.72) (1.94) (2.03) (2.72) (3.66) 
TYPE2       26.13***      3.65*** 1.44* 1.39   4.46* 3.86 0.94 
WLS  (0.58) (0.82) (0.67) (1.67) (1.79) (2.59) (4.22) 
TYPE3       26.13***      3.65*** 1.44* 1.39     4.46** 3.86 0.94 
SWLS  (0.64) (0.99) (0.63) (1.80) (1.70) (3.73) (3.87) 

 
a p-value: *, 0.05; **, 0.01; ***, 0.005. 
b Standard errors are in parentheses under parameter estimates.  
Table 8 
Regression analysis output: When “on any diet” is the reference category for DIET variable in the model 
 

Regression Type  Intercept black total.fat not on any diet on low-calorie diet on low-fat diet on low-carb diet 
TYPE1       30.25***a       3.20***  0.95  -3.03  1.75  2.75  -1.48  
OLS  (2.00)b  (0.70)  (0.72)  (1.94)  (2.03)  (2.72)  (3.66)  
TYPE2       27.52***       3.65***  1.44*  -1.39    4.46*  3.86  0.94  
WLS  (1.71)  (0.82)  (0.67)  (1.67)  (1.79)  (2.59)  (4.22)  
TYPE3       27.52***       3.65***  1.44*  -1.39      4.46**  3.86  0.94  
SWLS  (1.75)  (0.99)  (0.63)  (1.80)  (1.70)  (3.73)  (3.87)  

 
a p-value: *, 0.05; **, 0.01; ***, 0.005. 
b Standard errors are in parentheses under parameter estimates.   
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In Table 10, when “on any diet” is chosen as the 
reference category for variable DIET, the scaled  condition 
indexes are increased and show a m oderate degree of 
collinearity (condition index larger than 10) between the on-
diet dummy variables and the intercept. Using the table of 
scaled variance deco mposition proportions, in OLS and 
WLS, dummy variable for “not on any diet” and “on low-
calorie diet” are involved in the dominant near-dependency 
with the intercept; however, in SWLS, only the dummy 
variable for “not on any diet” is involved in the dominant 
near-dependency with the intercept and the other three on-
diet variables are much less worrisome.  

5. Conclusion  
Dependence between predictors in a linear regression 

model fitted with survey data affects the properties of 
parameter estimators. The problems are the same as for non-
survey data: standard errors of slope estimators can be 
inflated and slope estimates can have illogical signs. In the 
extreme case when one c olumn of the design matrix is 
exactly a linear combination of others, the estimating equa-
tions cannot be solved. The more interesting cases are ones 
where predictors are related but the dependence is not exact. 
The collinearity diagnostics that are avai lable in standard 
software routines are not entirely appropriate for survey 
data. Any diagnostic that involves variance estimation needs 

modification to account for sample features like strati-
fication, clustering, and unequal weighting. This paper 
adapts condition numbers and variance decompositions, 
which can be used to identify cases of less than exact 
dependence, to be applicable for survey analysis. 

A condition number of a survey-weighted design matrix 
1/2W X  is the ratio of the maximum to the minimum 

eigenvalue of the matrix. The larger the condition number 
the more nearly singular is ,TX WX  the matrix which must 
be inverted when fitting a linear model. Large cond ition 
numbers are a symptom of some of the numerical problems 
associated with collinearity. The terms in the decomposition 
also involve “misspecification effects” if the m odel errors 
are not independent as would be the case in  a sample with 
clustering. The var iance of an estimator of a regression 
parameter can also be written as a sum of terms that involve 
the eigenvalues of 1/2 .W X  The variance decompositions for 
different parameter estimators can be used to identify pre-
dictors that are correlated with each other. After identifying 
which predictors are collinear, an analyst can decide 
whether the collinearity has serious enough effects on a 
fitted model that action should be taken. The simplest step is 
to drop one or more predictors, refit the model, and observe 
how estimates change. The tools we provide here allow this 
to be done in  a way appropriate for survey-weighted 
regression models. 

 
 
Table 9 
Largest scaled condition indexes and its associated variance decomposition proportions: When “not on any diet” is the reference 
category for variable DIET in the model 
 

Scaled  Scaled Proportion of the Variance of 
Condition Index  Intercept gender total.fat on any diet on low-calorie diet on low-fat diet on low-carb diet 
TYPE1: OLS  
6  0.005 0.000 0.016 0.949 0.932 0.157 0.200 
TYPE2: WLS  
6  0.013 0.008 0.020 0.938 0.926 0.189 0.175 
TYPE3: SWLS  
6  0.006 0.007 0.013 0.686 0.741 0.027 0.061  
Table 10 
Largest scaled condition indexes and its associated variance decomposition proportions: When “on any diet” is the reference 
category for variable DIET in the model 
 

Scaled  Scaled Proportion of the Variance of 
Condition Index  Intercept gender total.fat not on any diet on low-calorie diet on low-fat diet on low-carb diet
TYPE1: OLS  
17  0.982 0.001  0.034 0.968 0.831 0.155  0.186 
TYPE2: WLS  
17  0.982 0.011  0.029 0.968 0.820 0.182  0.160 
TYPE3: SWLS  
17  0.897 0.018 -0.006 0.971 0.318 0.014 -0.019 
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