Acquisition, Use and Impacts of New Technologies in Policing

Thursday, July 19th, 2018

Presenters: Rose Werth, Dr. Daniel Lawrence, and Dr. Bryce Peterson Moderated by: Dr. Kevin Strom

RTI International is a registered trademark and a trade name of Research Triangle Institute.

Rose Werth

Rose Werth performs research analyses for the Policing **Research Program at RTI** International. She works on grants, evaluations, and training and technical assistance projects. Her work involves local criminal justice and service systems, homelessness, and sexual assault reform.

Daniel Lawrence, PhD, is a Research Criminologist in the Policing Research Program at RTI International. His research focuses on police legitimacy and procedural justice; police technology; police screening and hiring practices; and community policing. Current and past projects include evaluations of police-community interactions, body-worn cameras, gunshot detection technology, and public surveillance systems.

Bryce Peterson, PhD, is a senior research associate in the Urban Institute's Justice Policy Center. His research focuses on correctional policy, children of justice-involved parents, video surveillance and body-worn camera technologies, federal and state justice statistics, and prison population forecasting.

Technology Acquisition and Implementation in Law Enforcement Agencies

Rose Werth RTI International Policing Research Program

Objectives

What is the relationship between policing strategies and technology use?

How are law enforcement agencies making decisions about technology acquisition?

NIJ Grant Number 2012-MU-CX-0043 Research on the Impact of Technology on Policing Strategy in the 21st Century

Professional Problem oriented		Offender Targeting	Predictive
Community	Zero Tolerance	Hot Spot	Intelligence -led

Professional Problem- oriented		Offender Targeting	Predictive
Community	Zero Tolerance	Hot Spot	Intelligence -led

Professional Problem oriente		Offender Targeting	Predictive
Community	Zero Tolerance	Hot Spot	Intelligence -led

Professional	Problem- oriented	Offender Targeting	Predictive
Community	Zero Tolerance	Hot Spot	Intelligence -led

If policing strategy has little connection to technology use, what does?

Case Study

Community	Agency	Technology

Little control over budget

Leadership turnover Ad hoc planning

Limited IT expertise

Small/midsize agency Mixed impact

community policing

In Car Cameras

At the time of our site visit, only eight in car cameras were still functional.

Case Study

Culture Serves large city Strong leadership Budget Strong IT expertise Careful planning	Community	Agency	Technology
	Serves large city	Culture Strong leadership Budget Careful planning	Strong IT expertise

Large agency High impact

Focus on intelligenceled policing

License Plate Readers

Agency used grant funding to implemented a new LPR strategy: Fixed readers in high-crime areas

Future Research & Recommendations

Technology as building blocks

Performance Metrics

Questions? Policing Research Program Policing@rti.org

Policing Research Program Webinar, July 19, 2018

This project was supported by Award No. 2015-R2-CX-K147, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication/program/exhibition are those of the author(s) and do not necessarily reflect those of the Department of Justice.

Copyright © June 2018. Urban Institute. Permission is granted for reproduction of this file, with attribution to the Urban Institute.

Traditional Measurements of Firearm Violence

Common Sources of Crime Data

- Citizen and Victimization Surveys (NCVS)
- Official crime statistics (UCR, NIBRS, Police Department Records)

Historically, citizen reports have been the primary means by which police become aware of unlawful gunfire (Mazerolle et al. 1999)

 However, these citizens tend to be concentrated within a very small network of young males, many of whom have been both victims and perpetrators of illegal firearm activity (Braga, 2003, 2007), and who may be socially connected (Fox, 1996; Papachristos, et al. 2015, 2017).

Reporting and Collection of Firearm Data

Dark Figure of Crime

- (Coleman and Moynihan, 1996; Penney, 2014)
- While firearms-related homicide records are generally considered reliable (Archer and Gartner, 1984; La Free, 2005; Alavarado and Massey, 2010), other forms of firearm violence involving weapons discharges are often unreported or underreported (Mazerolle et al., 1999).
- Gunshot Detection Technology (GDT) may more reliably measure, report, and process firearm activity compared to citizen reports.

What is Gunshot Detection Technology?

- 2 Acoustic sensors throughout the city listen for the distinctive waveforms that firearms produce. When detected, individual sensors calculate the distance to the sound.
- **3** Readings from multiple sensors are used to triangulate the location of the shot.

Research Questions of this presentation

RQ1:

 Can GDT offer a new, better, metric for firearm shooting-related crimes, compared to traditional calls for service from community members?

RQ2:

 Do officers respond differently to GDT alerts compared to shooting-related calls for service from community members?

Study Sites

City	Pop. ¹	Violent Crime per 10,000 ¹	Property Crime per 10,000 ¹	GDT Alerts per square mile ²			
Milwaukee, WI	600,193	153.30	406.40	552.17			
Richmond, CA	110,868	91.91	341.40	148.45			
Denver, CO	699,259	65.74	358.97	164.94			
¹ 2016 UCR ² 2015 SST, Inc. Alerts							

RQ1: Samples

*

		Milwaukee, WI	Richmond, CA	Denver, CO
	Data	SST & CFS	SST & CFS	SST & CFS
	Dates*	02/25/2011 to 05/31/2016	06/01/2009 to 10/31/2015	01/08/2015 to 05/31/2016
Time Period 5 ye	5 years, 2 months	6 years, 4 months	1 year, 4 months	
	CFS Case Types	 "Active Shooter" "Officer Shot" "Shooting" "Shots Fired" 	 "Shooting" "Shooting into an occupied dwelling" "Shooting into an occupied vehicle" "Shots Fired Richmond Municipal Code" 	 "Shooting" "Shots Heard / Fired"
	Final CFS n	11,681	3,132	582
	Final GDT n	14,791	8,980	546
ll Ju	Total n	26,652	12,112	1,128

Duplicate Events Removed with Haversine formula

Calculates direct line distance on sphere from longitude and latitude

GDT Alerts to Calls for Service Ratio

GDT Alert

Call for Service Event

When greater than 1 = There are <u>more GDT Alerts</u> than CFS When equal to 1 = GDT Alerts and CFS are the <u>same</u> When less than 1 = There are <u>less GDT Alerts</u> than CFS

...within the time periods under consideration:

- Month
- Week of Year
- Day of Week
- Hour of Day

Milwaukee, Month and Week of Year

Milwaukee, Weekday and Time of Day

Milwaukee

GDT Alerts, Raw Count by Time and Weekday

GDT:CFS Ratio by Time and Weekday

Richmond, Month and Week of Year

Richmond, Weekday and Time of Day

Richmond

GDT Alerts, Raw Count by Time and Weekday

GDT:CFS Ratio by Time and Weekday

Legend								
More CFS	0.49- 0.99	1	1.00- 1.99	2.00- 2.65	2.66- 3.23	3.24- 4.13	4.15- 13.00	More GDT

Denver, Month and Week of Year

Denver, Weekday and Time of Day

Denver

GDT Alerts, Raw Count by Time and Weekday

GDT:CFS Ratio by Time and Weekday

					l	egend						
More CES	Only	0.07-	0.33-	0.50-	0.67-	0.73-	1	1.17-	2	2.17-	Only	Mara CDT
WOIP CF5	CFS	0.29	0.44	0.63	0.71	0.99	1	1.88	2	9	GDT	wore GD1

Research Question 2

RQ2:

• Do officers respond differently to GDT alerts compared to shooting-related calls for service from community members?

Response Time Defined:

• From community member call to 911 to when officer arrived at the scene

RQ2: Samples

*

		Milwaukee, WI	Richmond, CA	Denver, CO
	Data	CFS	CFS	CFS
	Dates	02/25/2011 to 12/31/2016	06/01/2009 to 10/31/2015	01/08/2015 to 06/15/2016
	Time Period	Time Period5 years, 10 months6 years, 5 months		1 year, 5 months
	CFS Case Types	 * "Shooting" * "Shots Fired" * "Shots Fired" * "ShotSpotter" * "ShotSpotter" * "ShotSpotter" 		 "Shooting" "Shots Heard / Fired" "ShotSpotter"
	Final Shooting n	1,595	795	37
	Final Shots Fired n	8,505	1,636	606
	Final GDT n (within CAD)	20,094 7,098		447
₩J	Total n	30,194	9,529	1,090

Duplicate Events Removed with Haversine formula

Calculates direct line distance on sphere from longitude and latitude

Response Times, Richmond

Response times are 28.5% longer for "Shooting" CFS vs SST

Response times are 6.2% longer for "Shots Fired" CFS vs SST

Response Times, Denver

Response times are 10.2% longer for "Shooting" CFS vs SST (n.s.)

Response times are 26.5% longer for "Shots Heard/Fired" CFS vs SST

Response Times, Original Coverage Area, Milwaukee

Original Deployment:

- Response times are 15.8% longer for SST vs "Shooting" CFS
- Response times are 6.1% longer for "Shots Fired" vs SST

Expansion #1:

- Response times are 11.7% longer for SST vs "Shooting" CFS
- Response times are 7.5% longer for "Shots Fired" vs SST Expansion #2:
 - Response times are 18.5% longer for SST vs "Shooting" CFS
 - Response times are 3.3% longer for "Shots Fired" vs SST

Response Times, Second Coverage Area, Milwaukee

Response times are 22.2% longer for SST vs "Shooting" CFS

Response times are 6.0% longer for SST vs "Shots Fired" CFS

GDT vs Shooting-Related Calls for Service - Takeaways

- Shooting Notifications
 - Gunshot Detection Technology does seem to more reliably measure, report, and process firearm activity compared to citizen reports.
 - But the ratio of GDT alerts to CFS is highly volatile to seasonality, day of the week, and time of day
- Response Times
 - In two of the sites we see significant response times for GDT alerts compared to shooting-related CFS. But results are much more mixed in the largest, and highest crime city.

Principal Investigators' Contact

Nancy La Vigne, PhD Director Justice Policy Center The Urban Institute <u>nlavigne@urban.org</u> @NLVigne Daniel Lawrence, PhD Research Criminologist Policing Research Program RTI International <u>dlawrence@rti.org</u> @LawrenceAtRTI

(dlawrence2@urban.org @LawrenceAtUrban after July 20, 2018)

The Milwaukee Police Department Body-Worn Camera Program: Results from a Randomized Controlled Trial

Bryce Peterson, PhD Lilly Yu Urban Institute **Daniel Lawrence, PhD** RTI International

Milwaukee BWC Program

- Milwaukee Context
- Strained police-community relations
- High profile police shooting (Dontre Hamilton)

- BWC Program
- Increase accountability and aid investigation
- Launched in October 2015
- Funding from *Strategies for Policing Innovation*

Phase	Description	# BWCs	Districts	Time
1	Pilot	182	2, 5, NTF	Oct, 2015
2	RCT treatment group officers	252 treatment group + 16 additional officers	1-4, 6, 7	Mar, 2016
3	Officers not in RCT	238	1-7	Jun, 2016
4	RCT control group officers	252 control group + 171 additional officers	1-7, NTF	Dec, 2016

Notes: RCT = randomized controlled trial; NTF = Neighborhood Task Force.

Randomized Controlled Trial (RCT)

- Randomly assigned 504 officers to treatment (camera) and control (no camera) groups
- Stratified assignment by district, race & shift

	#	% of	#	#	RCT	% of
Dist.	Officers	MPD	BWCs	Control	Sample	Sample
1	95	11.7%	30	30	60	11.9%
2	146	18.0%	40	40	80	15.9%
3	168	20.7%	52	52	104	20.6%
4	144	17.7%	46	46	92	18.2%
6	103	12.7%	34	34	68	13.5%
7	156	19.2%	50	50	100	19.8%
Total	812	100%	252	252	504	100%

Methods

- Data from Mar 21 Dec 20, 2016
 - Arrests, traffic stops, subject stops, citizen complaints, and use of force

- Difference-in-differences estimation
- Differences pre- and post-intervention between treatment group and control group

Poisson and logistic regression

Average Number of Arrests

Finding: BWCs did not affect officer arrests.

Average Number of Traffic Stops

Finding: BWCs did not affect traffic stops.

Average Number of Subject Stops

- Treatment group (with cameras)
- Control group (no cameras)

60

Share of Officers with One or More Complaint

Share of Officers, One or More Use-of-Force

Treatment group (with cameras)

■ Control group (no cameras)

Finding: BWCs did not affect use of force. 1. Officers with BWCs became more selective in who they approached and stopped

- 2. BWCs reduced complaints against officers
 - "Civilizing effect" vs. reluctance to lodge complaint
 - Recommendation: require officer notification

- 3. BWCs had no effect on use of force
- UOF already decreasing, 2013 to 2016
- BWCs may document existing restraint

Appendix: Difference-in-Difference Results

	Incident Rate Ratios			Odds Ratios	
				Citizen	Use-of-
		Traffic	Subject	complaint	force
	Arrests	stops	stops	S	incidents
Group	1.02	1.02**	0.94***	1.47	0.77
Period	0.89***	1.03*	0.63***	1.78†	0.82
Group x period	1.00	1.01	0.92***	0.49†	1.43
Constant	13.50***	118.87***	48.85***	0.08***	0.67**
Chi ²	49.63***	51.24***	2399.10***	3.92**	2.26**

 $^{\dagger}p < .10, *p < .05; **p < .01; ***p < .001$