
www.rti.org RTI International is a trade name of Research Triangle Institute. RTI and the RTI logo are U.S. registered trademarks of Research Triangle Institute.

Seven Steps to Less Stress
in Application Development
and Maintenance
The Behavior-Driven Development Approach
to Efficient, Effective Development Sprints

2020 Internship Showcase

Ayubi Kokayi
Durham Tech
internships@rti.org

Presenter
Presentation Notes
BDD = Behavior Driven Development

2

What is Quality Assurance?

Presenter
Presentation Notes
Quality Assurance is the art of finding what’s wrong or could go wrong in software or a project plan. Without a mature Quality Assurance process: - Systems can be structurally flimsy, something as simple as a typo can cause system failure - Projects don’t meet the business requirements as intended, or take longer to do so - QA Engineers may not be aware of how to properly test a system because of communication gaps - Projects run over deadlines because QA is involved too late in the Software LifecycleAll of these issues and more lead to stress from; Clients, who receive buggy or late software; Developers, who often have to completely rewrite parts of their codebase due to many defects in the code or entire requirements missed; QA engineers, who are given unrealistic deadlines to complete a full test cycle, usually on projects where they have had no prior involvement. Not to mention – User experience suffers!! During my summer internship, I was tasked with the research & implementation of a new approach to all aspects of the Software Development/Maintenance process here at RTI. That approach is called Behavior Driven Development, or BDD, a methodology that emphasizes communication and efficient, flexible design.

The Tale of Two Cycles

3

Requirements
Specification

Analysis

Design

Development

QA & Testing

Deployment

Waterfall Development

Presenter
Presentation Notes
Currently there are 2 software development cycles used at RTI – Agile & Waterfall. Agile centers around short, focused development cycles of 2-6 weeks on average. Constant feedback and improvement is the name of the game. This process works best for systems that are updated on a continuous basis – like a Mobile app.Waterfall is the “traditional” development lifecycle, the project goes from team to team in sequence. This process supports systems that can’t risk failures the first time around – a spaceship for example. The BDD methodology supports both types of systems – but what exactly is the BDD methodology? And how does it fix those problems mentioned in the previous slide?

7 steps to less stress: Behavior-Driven Development

4

Requirements
Prepared

Requirements
Submitted

Three Amigos

Scenarios
Created

Featured
Developed

Test Cases
Built

Feature
Delivered

Presenter
Presentation Notes
Behavior Driven Development can be broken down into 7 simple steps:1. Business Owner creates requirements for a feature2. The B.O submits these requirements as User Stories3. A "Three Amigo's" meeting is held, where the BO, Developer(s) & Tester(s) discuss each requirement, creating concrete examples of intended behavior4. These examples are used to create Gherkin “Scenarios” – aka. Acceptance Criteria5. The Developer uses these “Scenarios” to guide their development & write test automations6. The Tester uses them to build test cases for manual testing7. Product delivered to client and process repeatsDid you notice the ‘Behavior Driven’ aspect? The requirements are redefined in terms of “How will the software behave in order to meet the user’s needs?” 	Here’s an example for a clothing store:Requirement: Customer’s can return used clothingUser Story is created for “Returning Used Items”“Returning Used Items” 3 Amigo’s meeting is held, the resulting example is created:As a CustomerI want to return clothes I don’t likeSo that I can receive a refund**note: this is a very simple example but in action 1 meeting would result in several examples**The following Gherkin “Scenario” is created by the Tester, based on the example above:Scenario: Customer has receipt	Given Customer has receipt	And Purchased their clothes less than 14 days ago	When Customer returns clothing	Then they receive a full refundThis scenario acts as both an Acceptance Test & Documentation for the software featuresAt this point the Developer will begin writing code – defining the test automation and building the feature simultaneously The Tester now has documentation they can use to build manual tests and/or flesh out test automations for the developersRepeat until the feature is completed ! Getting into the nitty gritty details about implementing BDD is outside the scope of this presentation. But there are some key points of this methodology that will revolutionize the quality of your software, team performance & morale, and user-satisfaction.

Perks of BDD

5

o Shared understanding across key stakeholder teams
o Ubiquitous language
o Eliminates requirements defects
o Flexible, clean infrastructure
o Test-Driven development
o Maintainable software
o Money saved by debugging early

Presenter
Presentation Notes
All these perks bear their fruits in tangible and intangible ways. With a shared understanding, developers can build features right the first time around; less stress, time & money saved. Since the software infrastructure is defined by the intended behavior, updating/adding features as the software evolves is supported and the risk of breaking the infrastructure dwindles.Having a ubiquitous language makes it easy for non-technical stakeholders to communicate their needs and have them met.Back to the shared understanding, testers know what’s going on both from a technical perspective (codebase, system architecture) and a business needs perspective. Testers can test software faster and with clarity.BDD enables people to communicate, removing the pitfall of assumptions. Assumptions in user needs.Assumptions in technical abilities. Assumptions in code cleanliness. Assumptions in application readiness. Requirements being understood, and tests being written before code is written, saves time and ensures projects or features are delivered without delay, with quality assured. With high test coverage, most bugs are found well before they reach production. According to NIST, removing a bug during production costs 30x more than removal during requirements analysis. Emanuil Slavov estimates that in an agile environment, a bug can easily cost $4,000 post-production, which doesn’t include the affects buggy software has on company credibility. BDD has a high ROI !!

Real-World Usage: Mobile Developer Dashboard

6

Presenter
Presentation Notes
In order to implement BDD in a real-world context, I’ve worked alongside fellow intern Marcus Lofton to build and test a Dashboard for the mobile developers here at RTI. Guided by our mentors, Lee Whitbeck & Becky Johnson, we’ve built 2 UI components for version 1.0 of the application. During the Three Amigo’s meeting(s) we created examples of behavior for each requirement, which I then turned into Scenarios (ex. bottom right pic). These meetings are the corner stone of this methodology. They enable the Client to truly understand & communicate what they want. As a tester, I’m able to evaluate edge cases and communicate them to the other stakeholder’s for discussion. By forcing ourselves to create examples, we understand the software from a high-level of abstraction, and can discuss implementation from a low-level.

Acknowledgments

o Marcus Lofton
o Becky Johnson
o Lee Whitbeck
o Sarian Turner
o University Collaborations
o RTI International

7

Further Reading
• Introducing BDD
• Beginner's guide to BDD
• Behavior-Driven Development

From Scratch
• Cost of Quality

https://dannorth.net/introducing-bdd/
https://inviqa.com/blog/bdd-guide
https://hackernoon.com/behavior-driven-development-from-scratch-99r32fj
https://emanuilslavov.com/the-cost-of-quality/

Thank you
Contact: Ayubi Kokayi| email: internships@rti.org

8

	Seven Steps to Less Stress �in Application Development �and Maintenance
	Slide Number 2
	The Tale of Two Cycles
	7 steps to less stress: Behavior-Driven Development
	Perks of BDD
	Real-World Usage: Mobile Developer Dashboard
	Acknowledgments
	Slide Number 8

