Tech Talk

Using Experimental Case Designs to Evaluate and Develop Culturally Sensitive and Responsive Interventions

Dallas Elgin, PhD (delgin@rti.org) Ty Ridenour, PhD (<u>tridenour@rti.org</u>) Kineka Hull, PhD (<u>khull@rti.org</u>) Laurie Hinnant, PhD (hinnant@rti.org)

www.rti.org

Overview of Presentation

Gaps in Advancing Health Equity

Gaps of Randomized Controlled Trials (RCTs) and Other Designs

Experimental Case Designs (ECDs): Overview and History

ECDs: Benefits and Opportunities For Health Equity Research

Prominent ECDs

Recent Advancements in ECDs

Examples of ECDs Used by the Presenters For Health Equity Research

Questions

Health Equity as an Evaluation Priority

COVID-19 has helped to emphasize the need to address health equity in public health programs.

Program evaluations now need to reflect this priority and be responsive to it.

Many existing methods – while rigorous – fall short in being sensitive to health equity and today's evaluation needs.

Intersectionality that May Impact Evaluation

Gender Identity	Sexual Identity	Sexual Orientation		
Race	Nationality	Socioeconomic status		
Education Level	Religious affiliation	Ability (physical, mental, emotional)		
Age	Regional identity	Looks/Sounds (accents)		

Public Health Evaluation Gaps

Increase representation of marginalized populations and hard-to- reach communities in evidence-based interventions.	Can be designed and fielded quickly.	Can yield findings in a timely manner.
Can be conducted with smaller sample sizes.	Are sensitive to cost and budget limitations.	Minimize burden on local entities and groups involved in the evaluation.

Addressing Gaps

- For programs to be culturally sensitive and responsive, innovations in evaluation design are required.
- Recent innovations in experimental case designs offer key benefits including
 - the ability to employ within-subject experimental methods in communities and populations with small samples;
 - conduct experimental evaluations with reduced time and costs;
 - and provide increased representation of marginalized and hard-toreach communities in developing evidence-based interventions.

Limitations of RCTs and Other Designs

RCTs are the basis for many gold standard approaches to program evaluation.

• Well-documented strengths related to limited assumptions, establishing balance on observables and unobservables, and estimating causal effects.

At the same time, RCTs are limited to specific research scenarios.

RCTs typically:

- Underrepresent racial and ethnic minorities and underserved communities
- Require large sample sizes
- Are expensive
- Rely on data that are typically collected 3-6 months after treatment

Limitations of RCTs and Other Designs

Methodological requirements and limitations can result in RCTs being prohibitive or infeasible for many interventions.

 Largely for these reasons, the vast majority of programs in local communities, states and provinces, and countries are never evaluated" (Kazdin, 2021).

Rapid Cycle Evaluations are often proposed as an alternative to RCTs.

• They provide timely information on intervention effects but at the expense of rigor.

ECDs: Overview and History

ECDs encompass a body of experimental methods that have been used for over 50 years in psychology, education, medicine, and other fields

 Also known as Single Case Designs, N-of-1/N=1, Within-Subject, and Idiographic Clinical Trials

Despite a lengthy history, more widespread use has been hindered by:

- Limited instruction in social and biological science graduate programs
- Historical reliance on visual inspection and exclusion of statistical testing
- Lack of power analysis techniques
- Lack of established design standards

ECDs: Overview and History

www.rti.org

ECDs: Benefits and Opportunities for Health Equity Research

In contrast to RCTs, ECDs provide critical, innovative opportunities to:

- Conduct rigorous evaluations of culturally sensitive and responsive interventions
- Identify those interventions that promote greater equity

Critical strengths of ECDs include:

- Ability to conduct rigorous evaluations in samples and communities with small numbers of persons
- Less funding and time to complete compared with RCTs
- Ability to conduct evaluations within "real-world" settings
- Ability to more closely link treatment/intervention exposure to outcomes
- Opportunity to develop and test "precision treatments"
- Increased representation of racial and ethnic minorities and underserved communities in developing evidence-based treatments

Prominent ECDs: Multiple Baseline

- Multiple Baseline Design: Multiple cases entering baseline at the same time, with each case entering the intervention phase at staggered times
 - Most common method 69% of ECDs (Smith, 2012)
- Cases can be:
 - Multiple units with the same behavior in similar contexts
 - Same unit with multiple behaviors
 - No limit on the number of cases
- Factors affecting strength of the design
 - Number of cases (3 or more with 2 phases each)
 - Number of data points per phase (4 or more)

Source: Ridenour et al., 2017

Prominent ECDs: Treatment Reversal/Withdrawal

- Design: Characterized by a given case alternating between phases without and with intervention
 - ABAB design
- Most appropriate for interventions where the impact reverses/decays at removal
- Intervention's impact is ideally seen at each phase change
- Factors affecting strength of the design
 - Number of phases (4 or more)
 - Number of data points per phase (3 or more)

Source: Lobo et al., 2017

Recent Advancements in ECDs

- Recent methodological advances have greatly improved the rigor of ECDs and provide key opportunities for conducting rigorous evaluations of culturally sensitive and responsive evaluations
 - Development of standards for rigorous designs
 - Meta-analysis
 - Design-comparable effect sizes
 - CONSORT Diagrams and power analysis
 - Rigorous statistical analysis (e.g., hierarchical linear models)
 - Community-level applications

Hierarchical Model: N-of-1 Pilot Study to Test "Manual Pancreas"

www.rti.org

Hierarchical Model: N-of-1 Pilot Study to Test "Manual Pancreas"

www.rti.org

Hierarchical Model: N-of-1 Pilot Study to Test "Manual Pancreas"

Hierarchical Model: N-of-1 Pilot Study to Test "Manual Pancreas"

From: Ridenour et al., 2013

Hierarchical Model: Pilot Study to Increase Teen's Glucose Testing

Daily Tests = 1.9885 - 0.00501 (per day) + 0.9805 (for Motivational Interviewing) + 1.3240 (during Treatment phase) - 0.06317 (per day of Treatment phase) + 1.0430 (older teens during Treatment phase) + 0.6598 (while receiving CS) - 0.05378 (per day of Treatment phase for younger teens)

From: Raiff et al., 2016

Emotions Preceding and Following Interpersonal Violence

Table 4Associations betweenrelationship context measures andeither TDV victimization orperpetration (N = 70)

Relationship	Victimization			Perpetration			
Characteristics	Day Before	Same Day	Day After	Day Before	Same Day	Day After	
Closeness	0.0689	-0.0510^{\dagger}	-0.0339 [†]	0.0489	-0.0865	-0.0179 [†]	
	(0.03)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	
Commitment	0.0655	-0.0433	-0.0019	0.0317	-0.1166^{\dagger}	0.0123*	
	(0.03)	(0.02)	(0.02)	(0.03)	(0.06)	(0.02)	
Trust	0.1132	-0.1321	-0.0126	0.0394	-0.0535	0.0097^{\dagger}	
	(0.03)	(0.08)	(0.02)	(0.03)	(0.03)	(0.01)	
His Jealousy	0.1040	0.2754^{\dagger}	0.0117	0.0517	0.2151 [†]	0.0094	
	(0.04)	(0.08)	(0.01)	(0.04)	(0.05)	(0.01)	
Her Jealousy	0.1335	0.2215^{\dagger}	0.0273	0.0949	0.1819	0.0276	
	(0.04)	(0.08)	(0.01)	(0.03)	(0.03)	(0.01)	
His Instrumental	0.0439	0.1005^{\dagger}	-0.0067^{\dagger}	0.0688	0.0648^{\dagger}	0.0340	
Support	(0.03)	(0.08)	(0.01)	(0.03)	(0.06)	(0.01)	
Her Instrumental	0.0676	0.1779^{\dagger}	0.0027^{\dagger}	0.1240	0.1199 [†]	0.0349	
Support	(0.03)	(0.08)	(0.01)	(0.03)	(0.06)	(0.01)	
His TDV	_	_	_	0.0923	0.4993 [†]	_	
				(0.02)	(0.05)		
Her TDV	0.1007	0.6152^{\dagger}	-	_	-	-	
	(0.02)	(0.08)					

All coefficients reached p < .05 level of statistical significance. Parenthetical values are standard errors. Within the "Day Before" and "Same Day" columns, events of TDV (victimization or perpetration) are the dependent variable whereas TDV is the independent variable in "Day After" columns. [†] This aggregate (or "fixed") effect varied significantly among participants (i.e., was a significant random effect)

Adverse Community Experiences and Resilience in Milwaukee

- Adverse Community Experiences and Resilience (ACE|R) prevention framework
 - Three strategies:
 - Equitable opportunities (e.g., restorative practices)
 - People and norms (e.g., social norms)
 - Places (e.g., transportation)
- o Community engagement to meet local priorities
- Idiographic Clinical Trial:

10 communities randomized to ACE|R or "care-as-usual"

- Outcomes (monthly):
 - Violence (e.g., police data)
 - Child maltreatment (e.g., DCF)
 - Fighting (school suspensions)
- o Additional "control" communities to be identified

Funded by CDC Grant# R01 CE003191

-285

Pe	er	sonAly	tics™		Unconditional ICC =
Analysis Info					RMSE = 0.1645364
					AIC BI 18244.08 18286.8
Analysis Name:					Random effects:
GlucoseControl1	-				Formula: ~Observa Structure: Genera
Analysis Description:					(Intercept)
Test for Glucose Reduction	on fron	n Humalog Bolus Doses			Observation_Sequen Residual
					Fixed effects: A1C
Input Variables					(Intercept) Observation_Sequen Phase1
Variable that identifies participants					Correlation:
Patient_ID	~				Observation_Sequen Observation_Sequen
Outcome/Dependent Variable:		Treatment/Experimental Phases:	Baseline Phase:	ž	
A1C_Glucose	~	Phase	·		
Time Variable:		Subgrouping Variable:		Observed Mean ATC_Okucise by Ph	
Observation_Sequence	~	Age	,		i
How are missing data cod Leave this field blank if miss	led? ing val	ues are not denoted by numbers, c	haracters, or symbols. If i	multi	
				200-	
From: Tuelle	r, R	amirez, & Ride	nour, 2021		

inear mixed-effects model fit by maximum likelihood AIC BIC logLik 18244.08 18286.86 -9114.039

 Formula: ~0bservation_Sequence | Patient_ID

 Structure: General positive-definite, Log-Cholesky parametrization

 StdDev
 Corr

 (Intercept)
 28.6891090 (Intr)

 Observation_Sequence
 0.1261112 - 0.534

 Residual
 84.9416238

ixed effects: A1C_Glucose ~ Observation_Sequence * Phase

	Value	Std.Error	DF	t-value	p-value
(Intercept)	270.59448	16.015814	1546	16.895455	0
Observation_Sequence	0.47126	0.098499	1546	4.784419	0
Phase1	-76.62388	8.854657	1546	-8.653511	0
Observation_Sequence X Phase1	-0.61277	0.090139	1546	-6.798085	0
Correlation:					
	(Intr) Obs	sr S Phase	L		
Observation Converse	0 0 0 0				

 Observation_Sequence
 -0.038

 Phase1
 -0.352 -0.441

 Observation Sequence X Phase1 -0.297 -0.695
 0.266

Login Help

		DataJobs	PowerJobs	Logout
Study Design				
Analysis Name:	Analysis Description:			
EG Power Wittenborn	Norms Based on Junior et al., 20	18		
Number of Subgroups to	Number of Study Phases			
2	1			
Time Centering				
Centered ~				
Outcome Measureme	nt and Factors			
Proportion Error Variance				
.3				
Power Analysis Settti	ng			
Number of Bootstrap	Type I Error Rate			
Samples				
rom: Tueller, F	Ramirez, & Rideno	our, 2	021	

ersonAlyticsPower Version 0.1.7.9 PersonAlytics Version 0.3.1.7

Predictor	Μ	lean Est	imates	SE Estim	ates	Power
group2_phase1_	slope	0.172		0.001		1.000
Fit Metric	Mean Est:	imates	0.95 C	I Lo	0.95 0	Up
AIC	259.92	9	243.8	48	267.9)22
BIC	284.503		268.4	22	292.4	96
LL	-124.96	5	-128.9	61	-116.9	924
DF	5.000		5.000		5.000)

PersonAlytics Power Analyses: Monte Carlo Simulations

Note: Each dot represents an averaged simulations across 43 design factor combinations. Power curves are not monotonic due to estimates being aggregated across other design features: proportion of observations in the baseline phase, rare disease population size, and proportion of intraindividual variability due to residual error.

Would you like more information regarding ECDs? Send us your contact information so we can stay connected!

