Point-of-Use Water Treatment and Bottled Water Guidance

This informational brochure was developed in support of RTI International’s Clean Water for Carolina Kids study. If you have lead in your tap water, installing a point-of-use (POU) water treatment device can reduce the lead in your drinking water; this device can also be a cost-effective alternative to replacing pipes and fixtures. POU water treatment devices treat water from one tap—usually a kitchen sink—after the water has passed through all pipes and fixtures that could increase the water’s lead content.

POU water treatment devices include faucet-mounted, countertop, or under-sink devices; pour-through pitchers; and refrigerator-installed water dispensers with filters. Activated carbon filtration is the most common type of POU water treatment. This type of filtration works by capturing contaminants as the water passes through the filter. Reverse osmosis (RO) is another common treatment type and removes contaminants by passing water through a membrane that most contaminants cannot pass through. RO devices often combine a membrane with pre- and post-membrane filtration. RO devices remove the widest range of contaminants; however, these devices can be expensive, have lower flow rates, and create wastewater that increases total water usage.

Certification of POU Water Treatment Devices
Buy only water treatment devices and replacement filters that have been certified to remove lead to American National Standards Institute (ANSI) standards. Two organizations are accredited by ANSI to certify POU water treatment devices: NSF International and the Water Quality Association (WQA). Certified devices must reduce lead in water from up to 150 parts per billion (ppb) to 10 ppb or less. There are two standards, one for carbon filters (NSF/ANSI 53) and one for reverse osmosis systems (NSF/ANSI 58). Make sure (1) the device you choose is certified by NSF or WQA to either standard 53 or 58, and (2) that lead is listed as one of the removed contaminants.

The Importance of Replacing Filter Cartridges or RO Membranes
Carbon filters and RO membranes must be replaced regularly following the manufacturer’s guidelines. Some contaminants are removed because they cannot fit through the pores in the filter or membrane. Over time, the pores will become clogged, and the flow rate will decrease. Other contaminants are removed because they stick to the surface of the filter. Once the filter surface is filled, the filter stops capturing these contaminants and they pass through into the tap water. It’s not easy to tell when a filter surface becomes full. Finally, bacteria can colonize the filter cartridges over time and pass through into the treated water. For all these reasons, it’s very important to replace the filter in your water treatment device as often as the manufacturer recommends. Many devices include a light that indicates when the filter needs to be changed. Make sure to use the manufacturer brand replacement filter because off-brand filter cartridges may not be certified.
<table>
<thead>
<tr>
<th>Water Treatment Type</th>
<th>Example(^1) with Model Number</th>
<th>Initial Cost(^2)</th>
<th>Maintenance Cost/Gallon(^3)</th>
<th>Filter Life in Gallons (Time)(^4)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Pour-Through Pitcher | ZeroWater 10 Cup Pitcher Model Number: ZP-010 | $30–$35 | $1.25–$2.75 | 8–40 gal. (4–20 days) | • Portable
• No installation
• Low initial cost | • Only one brand NSF-certified to remove lead
• Shortest filter life
• Highest maintenance cost |
| Faucet-Mount Filter | Pur 3-Stage Advanced Faucet Water Filter Model Number: FM-3700 | $20–$30 | $0.06–$0.09 | 100–200 gal. (1–3 months) | • Easy to install and use
• Low initial cost
• Switches between filtered and unfiltered water | • Low flow rate
• Blocks entire faucet
• May not fit some faucets |
| Refrigerator Filter | Frigidaire PureSource 3 Model Number: WF3CB | $0 | $0.05–$0.15 | 150–400 gal. (2–6 months) | • Built into refrigerator; no upfront cost
• Filters the water for the ice dispenser also | • Low flow rate
• Requires a refrigerator with a filtered water dispenser |
| Under-Sink Filter (Plumbed-in) | 3M Aqua Pure (Carbon) Model Number: AP-DWS1000
EcoWater ERO-375 Model Number: RO-90 | $75–$450 (Carbon)
$180–$1,000 (RO) | $0.08–$0.10 | 100–625 gal. (1–6 months) | • Fast flow rate
• Option to use main faucet or create a separate tap
• Activated carbon or reverse osmosis models available | • May have high initial cost
• May require professional installation or maintenance |
| Countertop Filter (Connected to Sink Faucet) | Aquasana Countertop Water Filter System Model Number: AQ-4000W | $60–$500 | $0.05–$0.10 | 450–3,000 gal. (6–12 months) | • Long filter life
• Higher-end brands provide ambient, hot, cold, or sparkling water | • May have high initial cost
• Takes up space on counter |
| Water Cooler/Bottle Filling Station | Elkay EZH2O Bottle Filler Station, Filtered Single LZ Cooler Model Number: LZS8WSLP | $1,000 | $0.02–$0.03 | 3,000 gal. (~12 months) | • Fulfills any requirement to have a water fountain
• Longest filter life
• Lowest maintenance cost | • Highest initial cost
• Not for residential use |
| Outside Water Hose | Camco Premium Drinking Water Hose Model Number: 22853 | $25–$30 | $0 | Not applicable | • NSF Certified
• Low initial cost
• No filters or maintenance | • Stiffer hose
• Kinks easily |
| Portable Water Cooler (Stainless Steel) | Sansone SA0010 Model Number: SA0010-1L | $130–$135 | $0 | Not applicable | • Portable water source | • Product weight
• Must ensure water source is good quality |
Bottled Water

If your home or building’s tap water has over 150 ppb lead, consider using bottled water. Otherwise, bottled water may not be the best option because of the high cost ($1–$2/gallon). If you choose to use bottled water, check the package or the manufacturer’s website to ensure the provider meets Food and Drug Administration (FDA) standards. The FDA mandates that bottled water contain < 5 ppb lead. Make sure to store all bottled water out of direct sunlight and away from heat because the plastic could release harmful chemicals like bisphenol A (BPA) if stored above room temperature for a week or more.

Additional Resources

Filtration
- NSF-Certified Devices:
 http://info.nsf.org/Certified/DWTU
- WQA-Certified Devices:
 https://www.wqa.org/find-products/
- NSF’s Lead Filtration Guide:
 www.nsf.org/info/leadfiltrationguide
- EPA’s Water Filtration Guide:
- Consumer Reports Water Filter Buying Guide:
- Environmental Working Group’s Water Filter Buying Guide:
 http://www.ewg.org/research/ewgs-water-filter-buying-guide

Bottled Water
- FDA Bottled Water Consumer Update:
 https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm203620.htm

More Information

Jennifer H. Redmon, MSES, MPA, CHMM
Co-Project Director, Environmental Health Science
jredmon@rti.org
919.541.6245

Keith Levine, PhD
Co-Project Director, Laboratory Science
levine@rti.org
919.541.8886

RTI International
3040 E. Cornwallis Road, PO Box 12194
Research Triangle Park, NC 27709-2194 USA

2 Approximate purchase cost; does not include installation cost.
3 Approximate maintenance cost per gallon based on the cost and filter life of replacement filter cartridges or usage.
4 From NSF-certified filters listing: http://info.nsf.org/Certified/DWTU/listings_leadreduction.asp or manufacturer website. The time recommendations are based on household use; child care centers may need to replace the filters more often if the device is filtering water for more than 4–5 people. Filter lifetime will decrease with increased water hardness (i.e., dissolved solids in the water) or higher than household-level usage.