
RTI Press

Improving Data Quality
in Relational Databases:
Overcoming Functional
Entanglements
Tennyson X. Chen, Martin D. Meyer,
Nanthini Ganapathi, Shuangquan (Sean) Liu,
and Jonathan M. Cirella

May 2011

Research Report
Occasional Paper

This publication is part of the
RTI Research Report series.
Occasional Papers are scholarly
essays on policy, methods, or other
topics relevant to RTI areas of
research or technical focus.

RTI International
3040 Cornwallis Road
PO Box 12194
Research Triangle Park, NC
27709-2194 USA

Tel: 	 +1.919.541.6000
Fax: 	 +1.919.541.5985
E-mail: 	 rtipress@rti.org
Web site: 	 www.rti.org

RTI Press publication OP-0004-1105

This PDF document was made available from www.rti.org as a public service
of RTI International. More information about RTI Press can be found at
http://www.rti.org/rtipress.

RTI International is an independent, nonprofit research organization dedicated
to improving the human condition by turning knowledge into practice. The
RTI Press mission is to disseminate information about RTI research, analytic
tools, and technical expertise to a national and international audience. RTI Press
publications are peer-reviewed by at least two independent substantive experts
and one or more Press editors.

Suggested Citation

Chen, T. X., Meyer, M. D., Ganapathi, N., Liu, S., and Cirella, J. M. 2011.
Improving Data Quality in Relational Databases: Overcoming Functional
Entanglements RTI Press publication No. OP-0004-1105. Research Triangle
Park, NC: RTI Press. Retrieved [date] from http://www.rti.org/rtipress.

©2011 Research Triangle Institute. RTI International is a trade name of Research Triangle
Institute.

All rights reserved. Please note that this document is copyrighted and credit must be provided to
the authors and source of the document when you quote from it. You must not sell the document
or make a profit from reproducing it.

doi:10.3768/rtipress.2011.op.0004.1105

www.rti.org/rtipress

About the Authors
Tennyson X. Chen, MS, is a senior
system architect and database
manager in RTI International’s
Research Computing Division. His
main focus is the National Survey
of Drug Use and Health (NSDUH)
project.

Martin D. Meyer, PhD, is also a
senior system architect and database
manager in RTI International’s
Research Computing Division. He is
the NSDUH data processing manager.

Nanthini Ganapathi, MS, is
a senior web developer and a
NSDUH database designer at RTI
International.

Shuangquan (Sean) Liu, PhD, is
a senior software developer and a
NSDUH database designer at RTI
International.

Jonathan M. Cirella, BS, is a software
developer and NSDUH database
practitioner at RTI International.

http://dx.doi.org/10.3768/rtipress.2011.op.0004.1105

Improving Data Quality in Relational
Databases: Overcoming Functional
Entanglements
Tennyson X. Chen, Martin D. Meyer,
Nanthini Ganapathi, Shuangquan (Sean) Liu, and
Jonathan M. Cirella

Abstract
The traditional vertical decomposition methods in relational database
normalization fail to prevent common data anomalies. Although a database may
be highly normalized, the quality of the data stored in this database may still
deteriorate because of potential data anomalies. In this paper, we first discuss
why practitioners need to further improve their databases after they apply
the traditional normalization methods, because of the existence of functional
entanglement, a phenomenon we defined. We outline two methods for
identifying functional entanglements in a normalized database as the first step
toward data quality improvement. We then analyze several practical methods for
preventing common data anomalies by eliminating and restricting the effects of
functional entanglements. The goal of this paper is to reveal shortcomings of the
traditional database normalization methods with respect to the prevention of
common data anomalies, and offer practitioners useful techniques for improving
data quality.

Contents

Introduction	 2

Data Dependencies and
Relation Decomposition 	 2

Data Redundancy in
High-Level Normal Forms 	 3

Method	 5

Identifying Functional
Entanglements	 5

Practical Approaches for
Preventing Data Anomalies	 9

Conclusion	 14

References	 15

Acknowledgments	 Inside back cover

2 	 Chen et al., 2011 	 RTI Press

Introduction
Today’s computer systems can store massive
amounts of data of all types. To make searching
enormous databases more efficient, programmers
rely on a collection of tables, often called “relations.”
A database built around such tables is called a
“relational database,” and such databases are built
to handle all types of data. For example, a survey
system may create a searchable collection of tables
that records respondent address, phone number,
sex, age, survey questions, survey answers, and
other information. A company database may have
records representing employee name, office number,
telephone number, e-mail, supervisor name,
supervisor telephone number, and supervisor email,
among other information. Relational databases
provide a fast and efficient way to store and retrieve
electronic data in modern computer systems.

Database designers create and work with relational
databases on a regular basis. However, these
practitioners can face numerous problems when
building a database using tables. One common
problem is data redundancy, which occurs when data
are duplicated in a database table, or relation. These
duplicated data can cause anomalies that affect data
quality and provide users with incorrect information.
Therefore, practitioners must follow certain rules
while designing and normalizing their databases.

The traditional method of preventing data
redundancy and the resulting anomalies is called
“database normalization.” In the normalization
process, practitioners examine functional
dependency, multi-valued dependency, project-join
dependency, and several other data dependencies to
decompose a relation into multiple relations. The end
result of normalization is a set of relations that meet
the requirements of different levels of the normal
form. The higher the level of the normal form we
reach in a database, the lower the possibility that data
anomalies can occur.

The normalization process is well defined in the
literature and is commonly understood by database
designers. Our experience and recent research1,2
indicate that basic data anomalies can still exist

in high-level normal forms even if the database
meets all traditional normalization requirements.
Consequently, in addition to following the traditional
normalization methods, practitioners should strive to
identify functional entanglements in a database and
restrict their effects. By doing so, practitioners can
significantly improve data quality.

In this paper, we continue to build on these research
findings. We first discuss methods of identifying
functional entanglements in a normalized database.
Then we analyze several practical approaches for
restricting the potential effects of these functional
entanglements. The discussion provides practitioners
with tools they can use to improve database design
and implementation, extending what is typically done
during the traditional normalization process.

Through the remainder of this manuscript, we use
an italic font to represent the names of relations and
fields in all our discussions and examples.

Data Dependencies and Relation
Decomposition
Table 1 illustrates data redundancy in the Supervisors
relation. Notice that the employees in the first
two rows have the same supervisor with the same
telephone number.

Table 1. Supervisors: display of data redundancy and
anomaly

EmployeeName SupervisorName SupervisorPhone

Cooper Davis 888-1111

Smith Davis 888-1111

Barton Davis 888-1212

Armstrong Taylor 888-2222

In this relation, identical information on
(SupervisorName, SupervisorPhone) can appear
multiple times. This is an example of data
redundancy. If one of the telephone numbers in the
first two rows is accidentally changed, or if a new
employee with the same supervisor (Davis) but a
different phone number is inserted, the relation will
provide users with inconsistent information on the
telephone number for this supervisor.

	 Improving Data Quality in Relational Databases: Overcoming Functional Entanglements 	 3

In the third record of this relation, the employee has
the same supervisor as the first two records, but for
some reason the telephone number is different. This
is a typical example of a data anomaly that can occur
when a record is inserted or updated. Here, data
redundancy directly affects data quality for users by
providing conflicting information. Removing data
redundancies in a relational database is an important
technique for improving data quality.

Traditionally, relational database design relies on a
method called “vertical decomposition” to normalize
relations and eliminate redundancies. To illustrate the
basic mechanism of this method, we can decompose
the Supervisors relation into two smaller relations,
SupervisorsNew and SupervisorPhones, as shown in
Table 2 and Table 3, respectively.	

Table 2. SupervisorsNew: result of decomposition

EmployeeName SupervisorName

Cooper Davis

Smith Davis

Barton Davis

Armstrong Taylor

Table 3. SupervisorPhones: result of decomposition

SupervisorName SupervisorPhone

Davis 888-1111

Taylor 888-2222

After this decomposition, the system can retrieve
the supervisor telephone number for a particular
employee by first joining the two normalized relations
through the common field SupervisorName. The
decomposition removes the data redundancy, does
not remove information presented in the original
relation, and eliminates the original potential data
anomaly problem. Thus, decomposition is a useful
tool in improving data quality.

The above decomposition is based on the concept
of functional dependency, which states that the
value of one field (X) always determines the value of
another field (Y) of the same row in a relation. This
is illustrated in the relationship between the fields

SupervisorName and SupervisorPhone in Table 3, with
a functional dependency (denoted as X → Y) existing
between these two fields.

Functional dependency is the most common
cause of data redundancy. Other less common
data dependencies that can cause data redundancy
are multi-valued dependency and project-join
dependency. Researchers have also discussed other,
rarer types of data dependency, such as “template
dependency,”3 “subset dependency,”4 and “join
dependency.”5 The solutions for the problems caused
by these data dependencies all rely on vertical
decomposition methods.

However, our main discussion focuses on the
problems caused by functional entanglement,
which is in direct contrast to functional dependency.
The problems caused by functional entanglement
discussed in this paper cannot be solved by vertical
decomposition. Thus, other than functional
dependency, we do not address the other types of data
dependencies that are mentioned in the preceding
paragraph.

Based on different types of data dependencies,
vertical decomposition methods can normalize a
relational model into different levels of normal form,
such as Boyce-Codd normal form (BCNF), 4th
normal form (4NF), and 5th normal form (5NF).
These normal forms are considered high level and are
the desired goals of a database normalization process.
The normalization process that relies on vertical
decomposition to remove data redundancies is well
illustrated in the literature by Date,6 Kroenke,7 and
Ullman,8 among many others.

Data Redundancy in High-Level Normal
Forms
Although vertical decomposition is the most
commonly accepted method, its inability to
completely eliminate some very common data
redundancies is often overlooked. Practitioners
should consider steps beyond vertical decomposition
to prevent data anomalies.1,2 To illustrate this need,
we present the Employees relation described in
Table 4.

4 	 Chen et al., 2011 	 RTI Press

Table 4. Employees: A normalized relation that
contains data redundancy

EmployeeID Title Sex Last Name

101 Mr M Cooper

102 Mr M Smith

103 Dr F Armstrong

104 Dr M Davis

105 Ms F Taylor

In this relation, data redundancy exists between
fields Title and Sex in the first two rows. The value
set (Mr, M) in (Title, Sex) appears twice in Table 4,
and it would likely occur many times in the entire
relation. This kind of data redundancy can cause data
anomalies when records are inserted or updated.
However, because the value “Dr” in Title of rows 3
and 4 is associated with two different values in Sex,
a functional dependency relationship does not exist
between Title and Sex. Thus, database designers
cannot use decomposition methods to normalize
this relation despite the common data redundancy
we have observed. Therefore, if we assume the field
EmployeeID can uniquely identify a row in this
relation, we can simply designate this field as the
primary key for the Employees relation. This relation
is in 5NF, based on the normal form definition and
despite the data redundancy and potential data
anomalies.

The domain/key normal form (DKNF) does not
permit this kind of data redundancy. A relation is in
DKNF if and only if every constraint on the relation
is a logical consequence of the definition of keys
and domains.9 A relation “key” is a field or a set of
fields whose values can uniquely identify a row in
the relation. Because we assume that EmployeeID can
uniquely identify a row in the Employees relation, we
can set this field as the relation key. The “domain” of
a field is the set of all possible values that the field can
take in the relation. For example, it is desirable to set
the domain of Sex in the Employees relation as {M, F}.
DKNF requires that all database design specifications
be defined in terms of keys and domains. Because
the interrelationship between Title and Sex in this
example is not a constraint that can be defined by
domains or keys, the Employees relation is not in
DKNF. However, researchers have noted10-12 that

no direct algorithms exist by which to reach DKNF,
and implementing DKNF is impractical for several
reasons.

To better understand the data dependency that
occurs in Table 4, Chen et al.1 proposed a concept
called “functional independency” that practitioners
can apply to prevent data anomalies in database
designs. Functional independency is based on the
observation that two fields that are not functionally
dependent on each other may sometimes still
relate to each other: that is, they may not in fact be
functionally independent from each other. Functional
independency is defined as follows:

Given a relation R, field X of R is functionally
independent on field Y of R (noted as X><Y) if and
only if, for any instance xi∈Domain(X) and any
instance yj∈Domain(Y), instance (xi, yj) is always
valid for set of fields (X, Y) in R.1

We noted earlier that the fields Title and Sex in the
Employees relation are not functionally dependent
on each other. Neither are they functionally
independent, because some values in these two fields
cannot appear together in a given row. For example,
there should never be a record in this relation with
value (Ms, M) in (Title, Sex). We define this kind
of data dependency, which is between the states of
functional dependency and functional independency,
as “functional entanglement” throughout this paper.

Functional entanglements, like the interrelationship
between Title and Sex in the Employees relation,
cannot be automatically removed by the traditional
vertical decomposition methods. This characteristic
separates functional entanglement from all other data
dependencies mentioned in this paper so far.

As we have seen from the Employees relation
(Table 4), if two fields are not functionally dependent
on each other but are interrelated through functional
entanglement, data anomalies may occur and data
quality can suffer. Database practitioners should
be alert to the problems caused by functional
entanglements in a normalized database so that they
can identify them and restrict their effects.

In the following section, we explore the causes of
common functional entanglement and analyze

	 Improving Data Quality in Relational Databases: Overcoming Functional Entanglements 	 5

potential practical solutions to improve data quality
without the need to comply with the strict and
sometimes impossible DKNF criteria.

Method
Throughout this paper, we use a fictitious electronic
human resources (eHR) system as an example to
illustrate different data anomaly problems and
examine potential solutions. In the eHR model, each
employee is identified with a unique EmployeeID, as
we showed in the Employees relation in Table 4.

In the following section, we examine several examples
to investigate how different types of functional
entanglement can exist in high-level normal forms.
We follow that discussion with a section describing
how practitioners can better deal with weaknesses
resulting from functional entanglements.

Because fields in a database model can relate to
each other in multiple ways, and because functional
entanglements can appear in many different forms,
trying to identify all the functional entanglements
can be difficult. This is one reason that DKNF is so
difficult to achieve. Our objective in this paper is
not to provide an optimal or perfect database design
methodology. Rather, we aim to help practitioners
identify the weaknesses in real-world database
models so they can take constructive and important
steps to improve data quality.

Identifying Functional Entanglements
In this section, we discuss two methods for
identifying some of the most common functional
entanglements. The first method is based on detection
of “subdomain dependencies.”

Detecting Subdomain Dependencies
The cause of the data redundancy problem in
the Employees relation (Table 4) is a functional
dependency relationship between a domain subset of
Title ({Mr, Ms}) and Sex ({M, F}). This phenomenon
is called a subdomain dependency and defined
formally as follows:

Given a relation R, field Y of R is functionally
dependent on field X of R in subdomain (noted as
X →s Y) if and only if,

1.	 X → Y does not hold, and

2.	 There exists at least one instance
xi∈Domain(X) so that xi is associated with
one and only one Y-value in R.1

In other words, between fields X and Y, functional
dependency appears in a subset of instances, but
we cannot establish such a relationship for the
entire two fields. Because subdomain dependencies
have characteristics similar to those of functional
dependencies, data redundancies caused by
functional dependencies can similarly appear in
subdomain dependencies. The partial dependencies
and transitive dependencies that are supposedly
removed by the low-level 2nd normal form (2NF)
and 3rd normal form (3NF) can still appear through
subdomain dependencies in high-level normal forms.

Using a decomposition method is feasible only when
we can establish functional dependency between
two entire fields. Owing to the nature of subdomain
dependency, in which functional dependency occurs
only between domain subsets of the fields but not in
their entire domains, database designers cannot use
decomposition methods to remove data redundancies
caused by this kind of dependency.

Subdomain dependency is a specific type of func
tional entanglement. Detecting subdomain
dependencies is the first extra step a practitioner
should consider after having applied the traditional
normalization methods. This process is similar to
that of identifying functional dependencies. The
clues that allow us to detect subdomain dependencies
usually reside in the data modeling specifications.

The eHR model we are using as example needs to
capture the employment status of each employee.
An employee is hired on either a full-time
(denoted as FT) or hourly (denoted as PT) basis.
The model also needs to keep the ratio of hours
to full-time employment for every employee, so
that administrators can calculate payment scales
and benefits. For a full-time employee, the ratio
is always 1. For an hourly employee, this ratio is

6 	 Chen et al., 2011 	 RTI Press

between 0 and 1. We designed the Employment
relation shown in Table 5 to capture this information.

Table 5. Employment: a normalized relation with
subdomain dependency

EmployeeID EmploymentStatus EmploymentRatio

101 FT 1

102 FT 1

103 PT 0.5

104 PT 0.75

105 FT 0.5

In this example, we cannot establish functional
dependency between fields EmploymentStatus
and EmploymentRatio because value “PT” in
EmploymentStatus is associated with multiple
values in EmploymentRatio. But we can identify the
following subdomain dependency:

EmploymentStatus →s EmploymentRatio

This dependency exists because if EmploymentStatus
is “FT,” then EmploymentRatio must be 1. With this
subdomain dependency, data anomalies, such as the
record with EmployeeID 105 in Table 5, may occur
after record insertion or update, despite the fact that
we can designate EmployeeID as the primary key and
this relation is in 5NF. The clue to help identify this
subdomain dependency is within the statement in the
requirement specifications: “For a full-time employee,
the ratio is always 1.”

Subdomain dependencies are a common problem in
relational databases. If a practitioner does not make
an extra effort to identify and restrict their effects,
data redundancies can cause significant data quality
problems.

As another example of the complexities of these
potential dependencies, the eHR model needs to store
address information for the employees. Each address
record contains street number, street name, city, state,
and zip code. Some zip codes are uniquely associated
with certain cities and states. Some cities have multiple
zip codes, and a zip code can sometimes be used for
multiple cities in the same state. One zip code can also
potentially cross state lines in special areas such as
military bases. Finally, the same city name can appear
in different states. We designed the EmployeeAddresses
relation shown in Table 6 to store the address
information.

Because of the specified requirements of city, state, and
zip code, we cannot establish functional dependencies
among these three fields because some zip codes are
used for more than one city or state. Although this
relation is in 5NF with EmployeeID as the primary key,
the following subdomain dependencies exist.

Zip Code →s State, and
Zip Code →s City.

This situation arises because of the requirement
“some zip codes are uniquely associated with
certain cities and states,” while some zip codes can
be used for multiple cities or even states. From
this example we can again observe: one can spot
subdomain dependency information from the design
requirements that describe the characteristics of the
data.

Because of these subdomain dependencies, data
redundancies are widespread in the EmployeeAddresses
relation. The same value in (City, State, Zip Code)
appears multiple times, as in rows 1 and 2, and
redundancy on (State, Zip Code) is visible in rows 4
and 5. These data redundancies are the prime sources

Table 6. EmployeeAddresses: another example of subdomain dependency

EmployeeID Street Number Street Name City State Zip Code

101 101 1st Ave. Cleveland AL 35049

102 233 2nd Ave. Cleveland AL 35049

103 125 A Drive Birmingham AL 35215

104 256 B Drive Hoover AL 35216

105 54 C Drive Birmingham AL 35216

106 808 White Rd. Birmingham AL 35049

	 Improving Data Quality in Relational Databases: Overcoming Functional Entanglements 	 7

for data anomalies. The record with EmployeeID
106 is an example of data anomaly among city, state,
and zip code. In reality, zip code 35049 is not valid
for Birmingham, AL, but the current design cannot
prevent this record from being introduced into the
relation by record insertion or update.

Subdomain dependencies are a common
phenomenon in a relational database. Practitioners
should attempt to detect subdomain dependencies
after applying the traditional database normalization
methods.

Identifying Restricted Domains
Functional entanglements can appear in forms
other than subdomain dependency. To illustrate
these functional entanglements, we first introduce
two terms related to field domain—“unrestricted
domain” and “restricted domain.” Specifically, for any
given field, if all possible values in its domain can be
assigned to any record in this field, we call the domain
of this field an unrestricted domain; otherwise, we
call it a restricted domain.

The value in a field of a given row can be restricted in
one of two ways: (1) by other values in the same field
of other records, or (2) by the values in another field
of the same record. We can observe these two types of
restriction in the example that follows.

The eHR system needs to keep track of the total
number of advanced degrees each employee has
obtained; it also needs to record, among those
degrees, how many are related to information
technology (IT). We can design a 5NF relation
denoted Degrees (EmployeeID, Total_Degree, IT_
Degree), with EmployeeID as the primary key. The
domains of all three fields are nonnegative integers.
Total_Degree and IT_Degree give the total number of
advanced degrees and IT-related advanced degrees,
respectively, per employee. Table 7 shows a few rows
of this relation.

Table 7. Degrees: a relation with restricted domains

EmployeeID Total _Degree IT_Degree

101 1 0

102 1 1

103 1 2

In this relation, the EmployeeID field has a restricted
domain because of the uniqueness requirement of its
values. If we need to insert a new row in Table 7, the
EmployeeID of the new record must not duplicate any
of the values that have already been assigned to other
records in this field. Therefore, the domain of this
field is restricted by other existing values in the same
field.

Total_Degree and IT_Degree also have restricted
domains. This is because in any given row, the value
of IT_Degree must be no greater than the value of
Total_Degree. Once we assign a value to Total_Degree,
we cannot assign a greater value to IT_Degree in
the same row. Similarly, if we have assigned a value
to IT_Degree in a given record, we cannot assign a
smaller value to Total_Degree of the same record. Said
another way, the value (1, 2), shown for EmployeeID
103 in Table 7, is invalid for (Total_Degree,
IT_Degree); the person could not have more advanced
IT degrees than total professional degrees. In short,
not all possible values in the two domains are free
to be assigned to all rows of these two fields in this
relation. The values in these two fields are causing
domain restrictions for each other. Because our goal
is to identify functional entanglements among fields,
we are interested only in the restricted domains that
are caused by values in other fields of the same row.

The subdomain dependency discussed in
the Employment relation (Table 5) and the
EmployeeAddress relation (Table 6) is a specific
appearance of restricted domain. In the Employment
relation, the fields EmploymentStatus and
EmploymentRatio are restricting each other’s domain.
However, the interrelationship between Total_Degree
and IT_Degree is not one of subdomain dependency.
In subdomain dependency, some values in a field
can uniquely determine the values in another field.
However, the value of Total_Degree or IT_Degree in
a given row can determine only the range of values
in the same row of the other field, not the specific
value. Any time that a field’s domain is restricted by
the values of another field in a relation, functional
entanglements and potential data anomalies exist.
In the Degrees relation of Table 7, the value (1, 2) is
a data anomaly for (Total_Degree, IT_Degree). No
mechanisms in the current design can prevent this

8 	 Chen et al., 2011 	 RTI Press

value from being inserted or updated into the Degrees
relation, which is in 5NF.

Analyzing the domain of each field in a relation can
help root out functional entanglements. If database
designers detect any fields with restricted domains
caused by the values of another field, then they
need to provide an extra mechanism to prevent
data anomalies. We can look at another example to
illustrate how analyzing the domains of fields can help
identify functional entanglements in a relation. So far,
in all our examples, functional entanglements among
fields appear within the same relations. Sometimes,
however, similar functional entanglements can come
from different relations, as illustrated by considering
salary information as yet another part of the
hypothetical eHR system.

The eHR system keeps salary information for all
employees. Each employee belongs to a salary grade
that is identified with an alpha character, and each
employee has a current (annual) salary (denoted here
in US$, rounded to the nearest $1,000). In addition,
each salary grade is associated with a minimum salary
value. The annual salary of an employee must be
greater than or equal to the minimum salary of the
grade that he or she is in.

We can achieve 5NF by designing two relations:
EmployeeSalary(EmployeeID, SalaryGrade, Salary)
as shown in Table 8, and Grade (SalaryGrade,
MinimumSalary), as shown in Table 9.

Table 8. EmployeeSalary: functional entanglement
caused by restricted domain

EmployeeID SalaryGrade Salary

101 A 52,000

102 B 63,000

103 C 68,000

Table 9. Grade: functional entanglement caused by
restricted domain

SalaryGrade MinimumSalary

A 50,000

B 60,000

C 70,000

The functional dependencies in this model are as
follows:

EmployeeID → SalaryGrade
EmployeeID → Salary
SalaryGrade → MinimumSalary

The domains of each field are as follows:

EmployeeID	 : any nonnegative integers
SalaryGrade	 : any single alpha characters
MinimumSalary	 : any positive decimal numbers
Salary	 : any positive decimal numbers

If we further examine the domain of each field
in these two relations, we find two additional
requirements:

1.	 For any row in EmployeeSalary, the value of
SalaryGrade must be one of the values in the field
that bears the same name in the Grade relation.

2.	 For any row in EmployeeSalary, the value of
Salary must be greater than or equal to the value
in MinimumSalary in the row with a matching
SalaryGrade in the Grade relation.

We can address the first requirement by simply
using the well-known and commonly used
technique of enforcing a foreign key constraint on
the field SalaryGrade from the Grade relation to
EmployeeSalary. The second requirement indicates
that the domains of SalaryGrade and Salary in the
EmployeeSalary relation are restricted. The domain of
Salary in the EmployeeSalary relation is restricted by
the values in MinimumSalary in the Grade relation
through the common field SalaryGrade. Because of
these restricted domains, functional entanglements
exist in this relation design.

As we can see in Table 8, the third record (namely,
EmployeeID 103) contains a data anomaly because
the salary is lower than the minimum value of the
corresponding grade. Unfortunately, we cannot
prevent this record from being inserted or updated
into this 5NF relation based on the current design. In
short, the correlation between restricted domains and
data anomalies is clear.

In conclusion, by detecting subdomain dependencies
and identifying restricted domains, we can determine

	 Improving Data Quality in Relational Databases: Overcoming Functional Entanglements 	 9

whether a database design contains functional
entanglements. In the next section, we analyze
practical approaches to eliminate or prevent data
anomalies caused by functional entanglements.

Practical Approaches for Preventing Data
Anomalies
Chen et al.2 proposed three practical methods for
preventing data anomalies caused by functional
entanglements. We summarize them briefly below,
explore their applicability, and discuss their strengths
and shortcomings in dealing with different types of
functional entanglement. Following that discussion,
we introduce and analyze another practical method
that can be applied to prevent data anomalies.

Preventing Data Anomalies by Changing
Relation Design
As shown in the previous section, after having
normalized a database into BCNF or even 5NF
with the vertical decomposition method, database
designers need to take further steps to refine their
databases to prevent data anomalies. One of these
steps is to analyze and modify the data model at the
design level. Two main options of changing relation
design are available to achieve this objective: field-
level disentanglement and horizontal decomposition.

Field-Level Disentanglement
The first option, which we call “field-level disentangle
ment,” seeks to untangle data interrelationships at
the field level. We can demonstrate this approach by
further analyzing the relation Degrees(EmployeeID,
Total_Degree, IT_Degree) shown in Table 7, in
which both Total_Degree and IT_Degree have
restricted domains because they do not represent
two disjoint subsets in terms of categorical
classification of degrees. In essence, IT_Degree is a
part of Total_Degree. Hence, there is a constraint,
Total_Degree ≥ IT_Degree, for all rows. This
constraint can lead to data anomalies, although the
relation is already in 5NF and cannot be further
decomposed.

To remove the restricted domains in this relation,
we can change the relation design by using disjoint
subsets. In this particular example, we can replace
the field Total_Degree with Non_IT_Degree; this field

would then reflect the number of professional degrees
that are not IT-related for each employee. The new
relation, EmployeeDegrees, is as follows:

EmployeeDegrees(EmployeeID, Non_IT_Degree,
IT_Degree), where Total_Degree
= Non_IT_Degree + IT_Degree.

After the redesign, the fields Non_IT_Degree and
IT_Degree represent two disjoint and mutually
complementary subsets. Because no restrictions exist
on how the values of these two fields can be assigned
in any rows, these two fields both have unrestricted
domains. This new design eliminates the potential of
data anomalies. In addition, because the value of the
original Total_Degree can be derived from the sum
of Non_IT_Degree, and IT_Degree,, no information
is lost from the original relation model. This example
demonstrates that both relations Degrees and
EmployeeDegrees are in 5NF, but EmployeeDegrees
is better than Degrees at preventing data anomalies.
One important point about this improvement is that
EmployeeDegrees is a product of relation redesign
rather than decomposition.

This example also highlights the importance of
further actions after database designers have applied
the traditional decomposition methods when
designing a database. Practitioners should analyze
functional entanglements and continue to refine the
design of relations as an integral part of normalizing
a database. When a field exists that is a subset of
another field in terms of categorical classification,
like Total_Degree and IT_Degree in Degrees, or when
mathematical or logical interrelationships exist
among fields, this relation will usually have insertion
and update anomalies that vertical decomposition
methods cannot remove. If we identify restricted
domains in a relation, we can first consider using the
field-level disentanglement method, which redesigns
the relation model to improve data quality.

The main advantage of the field-level disentanglement
method is that changes are made at the design level:
database designers should thus encounter little or no
additional cost at the programming or production
levels. Once practitioners apply this method
successfully, functional entanglements and the
resulting insertion and update anomalies no longer
exist, even before the database is implemented. This

10 	 Chen et al., 2011 	 RTI Press

process is efficient and straightforward; it does not
require any other database system tools to enhance
data quality.

Although the field-level disentanglement method
is very effective in disentangling data dependencies
caused by categorical classification and logical
or mathematical interrelationships, this method
does have a disadvantage: its usefulness in other
situations is limited. Usually, this method works only
when functional entanglements occur at the field
level for all rows. For example, it cannot be used to
solve the data anomaly problems for the relation
EmployeeAddresses (Table 6), because the subdomain
dependencies only affect a subset of rows.

Horizontal Decomposition
Our second option to eliminate restricted domains at
the design level is to use horizontal decomposition.
Database designers can apply this method to
normalize some relations into DKNF in certain
situations.6 As the name suggests, this method
decomposes a relation horizontally by splitting a
relation into multiple relations with the same table
structure. It targets mainly relations with restricted
domains that are caused by a limited number of
domain subsets. Practitioners use decomposition
along the line of these domain subsets to remove the
restrictions on domains.

The relation Employment(EmployeeID,
EmploymentStatus, EmploymentRatio) of Table 5
illustrates this approach. According to the horizontal
decomposition method, we can split Employment into
two smaller relations with identical structure:

•	 Employment_WholeRatio(EmployeeID,
EmploymentStatus, EmploymentRatio), which holds
only full-time employees with
EmploymentStatus=“FT” and
EmploymentRatio =1, and

•	 Employment_PartialRatio(EmployeeID,
EmploymentStatus, EmploymentRatio),
which holds only hourly employees with
EmploymentStatus=“PT” and
0 ≤ EmploymentRatio ≤ 1.

After the decomposition, the domains of fields
EmploymentStatus and EmploymentRatio in the
new relations are no longer restricted, and the new
model eliminates potential data anomalies. As a
result, subdomain dependency EmploymentStatus →s
EmploymentRatio no longer exists in either relation.

Although the horizontal decomposition method
is simple and straightforward, its drawbacks may
outweigh its benefits. The method has not been
commonly adopted since its debut. First, this method
increases the complexity of a system and the cost
of maintenance. When introducing a new record,
the programmer must know in which relation to
insert this record. Merely updating the value of
a row may also require the row to be moved to
another relation. Second, this method may cause the
information in the database to be widely scattered.
Using this method to decompose the EmployeeSalary
relation (Table 8), for instance, may produce quite
a few decomposed relations, one for each possible
salary grade, which makes queries for information
extremely difficult. Finally, although the horizontal
decompositions appear to have normalized some
relations into DKNF, they can also inadvertently
introduce a new constraint that requires the
decomposed relations to maintain the same or similar
structure. If database designers need to change the
design of one relation, they must also make the same
change to multiple relations. This kind of redundancy
adds costs to maintaining the database. Furthermore,
this new constraint in itself violates the definition of
DKNF.

We demonstrated above that by changing relation
design, practitioners can prevent data anomalies in
certain situations. We also noted that these methods
have limitations. When changing the design is not
feasible, we can consider employing some existing
relational database management system (RDBMS)
tools in the implementation stage.

Next, we demonstrate how to use these standard
RDBMS tools to restrict or reduce the effects of
functional entanglement to prevent data anomalies.
These tools are not new techniques per se, and our
intention is not to explain what they are and how they
work. Rather, we explain how to use those tools and
techniques to handle functional entanglements.

	 Improving Data Quality in Relational Databases: Overcoming Functional Entanglements 	 11

Preventing Data Anomalies by Utilizing RDBMS
Tools

Implementing Lookup Relations
One approach based on using RDBMS tools
involves enforcing referential integrity and using
lookup relations. As the name suggests, lookup is
a referencing mechanism that allows the values of
certain fields of a relation to be verified by the values
of the same fields in another relation.

To establish a lookup relationship, practitioners can
first build a lookup relation with all possible values
in certain fields. They can then enforce referential
integrity on the referencing relation to the lookup
relation by using a foreign key constraint. This
mechanism ensures that the values of the underlying
fields in the referencing relation are validated
whenever a row is inserted or updated.

Referential integrity is a well-known and widely used
technique in database implementation. It ensures
that different relations are properly related in a
database.13 To illustrate how this method can reduce
data anomalies, we return to the EmployeeAddresses
relation (Table 6). In this relation, data anomalies
arise because of subdomain dependencies among zip
code, city, and state. The first step of improvement is
to build an additional relation that holds all possible
valid values of zip code, city and, state. Table 10
shows a few records of the relation Zipcodes (Zip
Code, City, State). This relation serves a lookup
purpose for the matched fields in the referencing
EmployeeAddresses relation. In this lookup relation,
because no functional dependencies arise among Zip
Code, City, and State, all three fields are part of the
primary key.

Table 10. Zipcodes: lookup relation with all possible
underlining values

Zip Code City State

35049 Cleveland AL

35215 Center Point AL

35215 Birmingham AL

35216 Hoover AL

35216 Birmingham AL

35220 Center Point AL

After we build a lookup relation of this sort, we can
set up a foreign key constraint so that fields Zip Code,
City, and State in EmployeeAddresses are linked to the
corresponding fields in Zipcodes. A generic structured
query language (SQL) statement for defining
referential integrity for this model is shown below:

ALTER TABLE [dbo].[EmployeeAddresses] WITH CHECK
ADD CONSTRAINT [FK_EmployeeAddresses_Zipcodes]
FOREIGN KEY 	 ([Zip Code],
	 [City],
	 [State])
REFERENCES [dbo].[Zipcodes]
	 ([Zip Code],
	 [City],
	 [State])†

Once we enforce referential integrity in this way,
every time a row in EmployeeAddresses is inserted
or updated, the City, State, and Zip Code values are
validated through the Zipcodes relation. The insert or
update operation will succeed only when a row with
matching values in all three fields in Zipcodes exists.
By keeping clean records in Zipcodes, we can largely
prevent invalid entries in the EmployeeAddresses
relation.

The main advantages of defining referential integrity
in a database are improved data quality and
consistency. Because referential integrity is declared
at the design level, custom programming is not
needed. This advantage in turn eliminates unintended
programming errors. The data are kept valid and
intact by the database itself.

The lookup relation method has some disadvantages.
First, subdomain dependencies still exist in Zipcodes,
and data anomalies may still occur in this lookup
relation. If the content in a lookup relation is not
valid, then the data quality of the main relation can
erode. This erosion can in turn affect the maintenance
costs of keeping the correct content in the lookup
relation. Second, this method requires an increased
level of processing to validate data, and it increases
the complexity of the data model by introducing
more relations. Third, using cascading deletes and
updates, which database servers offer as a built-
in option to maintain data integrity, may cause

†	 When writing SQL statements in this paper, we are using SQL Server
2005 syntax.

12 	 Chen et al., 2011 	 RTI Press

inadvertent loss of data without the user’s knowledge.
Finally, if the lookup values require constant updates
or user manipulations, this method will increase the
processing burden and possibly cause potential data
errors in the main relation.

By understanding the drawbacks of the lookup
relation method, we can determine when to apply
it. This method works best in situations that have
finite, predefined, stable, and standard lookup values,
such as zip code data (which can be purchased and
do not require constant user manipulations). This
method is also helpful for alleviating the problem
explained in the Employees relation shown in Table 4
by predefining a set of finite values for (Title, Sex)
in a lookup relation. If building such a lookup
relation is impossible or not appropriate, such
as in the Employment relation of Table 5 and the
EmployeeSalary relation of Table 8, using this method
is not suitable.

Utilizing Check Constraints
In the examples of the Employment and
EmployeeSalary relations above, we demonstrated
how to detect functional entanglements by
identifying subdomain dependencies and restricted
domains. In these two examples, creating lookup
relations to prevent data anomalies was impossible
because of the infinite number of possible lookup
values. However, in similar situations, the “check
constraints” method is effective in preventing data
anomaly problems.

Check constraints are fast, row-level integrity checks
offered by most database servers as a standard,
built-in RDBMS tool. Traditionally, RDBMS check
constraints are designed to limit the domain scope of
a field. Using check constraints can improve domain
integrity by limiting a field to a set of allowable
values.14 For example, when implementing the
Employees relation in Table 4, the data type of field
Sex can be defined only as a one-character string
in the database. Without a check constraint, we
can assign any character to this field, which could
obviously introduce a considerable number of data
problems. If database designers want this field to

take only a value of {F, M} and nothing else, a check
constraint can be defined as follows:

ALTER TABLE [dbo].[Employees] WITH CHECK
ADD CONSTRAINT [CK_Employees_Sex]
CHECK ([Sex] = ‘F’ or [Sex] = ‘M’)

This same technique can help prevent data anomalies
caused by functional entanglements. For example,
we can build a check constraint as follows for the
Employment relation (Table 5):

ALTER TABLE [dbo].[Employment] WITH CHECK
ADD CONSTRAINT [CK_StatusRatio]
CHECK (([EmploymentStatus] = ‘FT’ and
		 [EmploymentRatio] = 1) or
	 ([EmploymentStatus] = ‘PT’ and
		 [EmploymentRatio] >= 0 and
		 [EmploymentRatio <= 1))

Once the check constraint is implemented, any
attempts to insert or update a row in the Employment
relation with an invalid combination in
(EmploymentStatus, EmploymentRatio) will fail.
Similarly, a check constraint can be devised to
prevent data anomalies in the EmployeeSalary relation
(Table 8) as follows:

ALTER TABLE [dbo].[EmployeeSalary] WITH CHECK
ADD CONSTRAINT [CK_SalaryGrade]
CHECK (([SalaryGrade] = ‘A’ and [Salary] >= 50000) or
	 ([SalaryGrade] = ‘B’ and [Salary] >= 60000) or
	 ([SalaryGrade] = ‘C’ and [Salary] >= 70000))

When this check constraint is implemented, any
attempts to insert or update a row in EmployeeSalary
with an invalid salary grade, or with an out-of-range
salary value, will cause the RDBMS to generate an
error and the operation will fail.

The main advantages of the check constraint method
are its simplicity and its ability to handle situations
that the other methods discussed cannot. This method
is considerably faster than using lookup relations and
other RDBMS tools.15 In some instances, the check
constraint method can also simplify the relation
model. In the example involving the EmployeeSalary
relation, the Grade relation may no longer be
needed if the business model does not use it for
purposes other than limiting the salary values in the
EmployeeSalary relation.

The main disadvantage of the check constraint
method is that it is difficult to maintain. If frequent
changes are needed to the information related to

	 Improving Data Quality in Relational Databases: Overcoming Functional Entanglements 	 13

the minimum value of each salary grade in the
EmployeeSalary relation, or adding or deleting salary
grade has to be done on a regular basis, then database
administrators will constantly need to change
the SQL code in the check constraint definition.
The additional custom programming required to
implement and maintain check constraints can
itself be a source of errors. In addition, with the
check constraint method, some useful information
is hidden in SQL code, and the information is not
available through database queries.

Also, in most database servers, a check constraint is
limited to checking information within one relation.
Querying information in another relation in a check
constraint is impossible.15 For example, with respect
to the salary and grade example, it would be ideal
if the check constraint could query into the Grade
relation to retrieve the value of MinimumSalary for
a given SalaryGrade. This would mean keeping both
relations (EmployeeSalary and Grade) while making
the constraint simpler and easier to implement and
maintain. It would also mean making the minimum
salary information available via database queries.
Because this querying mechanism is not possible
via a check constraint method, the usefulness of this
method is limited.

The check constraint method is effective for
enforcing general data validation rules or simple
business rules. The checks are usually very easy to
implement if the functional entanglement is based
on simple logic, such as in the Employment relation
of Table 5. However, when no clear logic for the
rules among fields exists in a relation, such as the
EmployeeAddresses relation (Table 6), this method
cannot apply.

When all the above methods fail to eliminate data
anomalies, we recommend that practitioners consider
database triggers, as we describe next.

Implementing Database Triggers
A database trigger can be defined as a special type of
stored procedure that is executed automatically based
on the occurrence of a database event.14 A trigger
ensures that specific events of data insertion, update,
or deletion cause the database to automatically
execute the programming code written in the

corresponding trigger. The stored procedure in a
database trigger can perform virtually any operation
in a database. Therefore, using database triggers can
be a powerful tool in preventing data anomalies.
Unlike other RDBMS tools mentioned earlier, the
functionality of a database trigger goes beyond
enforcing data rules. Therefore, practitioners should
exercise caution when designing and implementing
them.

A database trigger can perform all data validations
that are enforceable with check constraints. An
example of how to implement a trigger for the
Employment relation of Table 5 is as follows:

ALTER TRIGGER [dbo].[EmployeeID] ON [dbo].
				 [Employment] AFTER INSERT AS
BEGIN
	 SET NOCOUNT ON;
	 DECLARE @EmploymentCount int

	 SELECT @EmploymentCount = count(*)
	 FROM [dbo].Inserted
	 WHERE (([EmploymentStatus] = ‘FT’ and
				 [EmploymentRatio] = 1) or
			 ([EmploymentStatus] = ‘PT’ and
				 [EmploymentRatio] >= 0 and
				 [EmploymentRatio <= 1))

	 IF @EmploymentCount <= 0
	 BEGIN
		 ROLLBACK TRANSACTION
		 RAISERROR (‘Invalid Employment Status or
		 out of range Employment Ratio’ , 10, 1)
	 END
END

This is a typical insert trigger. The database server
executes the above SQL code every time a row is
inserted into the Employment relation. The content
of the inserted row is temporarily stored in a one-
row relation named “Inserted” that is available for
data validation by the trigger. When this trigger is
implemented, any attempts to insert a row in the
Employment relation with invalid combinations in
(EmploymentStatus, EmploymentRatio) will fail. A
similar mechanism can be implemented separately
for other data events such as row update or deletion.

One advantage of database triggers over check
constraints is their ability to perform relation queries.
With respect to the EmployeeSalary relation, for
instance, we noted that the ideal approach would be
to keep both relations EmployeeSalary and Grade and
build a relationship between them to validate data.

14 	 Chen et al., 2011 	 RTI Press

This kind of relationship is not possible with check
constraints, but it is with a database trigger, which
can be done as follows:

ALTER TRIGGER [dbo].[SalaryRequirement] ON [dbo].
		 [EmployeeSalary] AFTER INSERT AS
BEGIN
	 SET NOCOUNT ON;
	 DECLARE @SalaryCount int

	 SELECT @SalaryCount = count(*)
	 FROM [dbo].Grade G, Inserted I
	 WHERE (I.SalaryGrade = G.SalaryGrade) and
		 (I.Salary >= G.MinimumSalary)

	 If @SalaryCount <= 0
	 BEGIN
		 ROLLBACK TRANSACTION
		 RAISERROR (‘Invalid Salary Grade
			 or out of range Salary value’ , 10, 1)
	 END
END

When this trigger is implemented, any attempt
to insert a row into EmployeeSalary will cause
the RDBMS to query and compare the salary
information with the MinimumSalary value in the
Grade relation based on the value of SalaryGrade. If
the row that is supposed to be inserted has an invalid
salary grade, or has an out-of-range salary value, the
RDBMS will generate an error and the insertion will
fail. This type of data validation can be a useful tool
for maintaining data quality.

The main benefits of using database triggers are
flexibility and power. The stored procedure triggered
by a data operation of a relation can provoke any SQL
code. This allows practitioners to build numerous
features, such as a relation query, as discussed earlier,
into their databases. Moreover, a trigger can enforce
data validation rules at the row level as well as the
field level. For example, if a condition is imposed
on the Grade relation (Table 9) such that the total
number of different grades should be 20 or fewer,
then this condition would require data validation
that this relation can contain only up to 20 rows.
No other RDBMS tools, other than an insert trigger,
can enforce this requirement. Compared with other
RDBMS tools in general, and check constraints
in particular, a database trigger offers superior
functionality in many aspects. Using triggers
correctly often leads to improved data quality.

Nevertheless, implementing database triggers has
potential drawbacks. First, comparing the solutions
offered by check constraints and database triggers
on the Employment relation above, we can see that
programming a trigger is more complicated than
programming a check constraint. Moreover, a
check constraint performs data validation on both
record insertion and update. Practitioners need to
implement triggers for relation insertion and update
separately, with very similar code. Consequently,
when we need to change data validation rules, we
have to alter the program in multiple places.

A second potential drawback is that, because a
database trigger is so powerful, it can easily cause
unintended consequences. For example, a trigger
in a relation can cause a data operation in another
relation with a trigger that provokes a data operation
in the first relation. This can cause a recursive
execution of triggers that may damage or destroy
the database. Third, though powerful, database
triggers have their own limitations. For example,
we have not found an effective solution using a
database trigger to address the data anomaly issue
in the EmployeeAddresses relation (Table 6) without
first building a lookup relation, as stated above. The
business rules that dictate the relationship among
city, state, and zip code are too complicated to be
captured in a database trigger without some kind of
lookup function.

Conclusion
In creating and maintaining relational databases,
merely meeting the traditional normalization
requirements is not enough to eliminate some basic
data anomalies. Common data anomalies can exist in
high-level normal forms because of the existence of
functional entanglements. By identifying functional
entanglements in a database and restricting their
effects, practitioners can greatly improve data quality.

We introduced two different methods to identify
functional entanglements by detecting subdomain
dependencies and restricted domains. We also
examined two methods of eliminating functional
entanglements at the design level in a normalized
database: field-level disentanglement and horizontal

	 Improving Data Quality in Relational Databases: Overcoming Functional Entanglements 	 15

decomposition. Finally, we analyzed three other
practical approaches for restricting the effects
of functional entanglements with RDBMS tools:
building lookup relations, utilizing check constraints,
and implementing database triggers.

Each solution presented in this paper has its
strengths and shortcomings when handling different
types of problems. Based on these strengths and

1.	 Chen T, Liu S, Meyer M, Gotterbarn D. An
introduction to functional independency in
relational database normalization. In: John D,
Kerr S. Proceedings of the 45th ACM Southeast
Regional Conference (ACMSE 2007); 2007 March
23-24; Winston Salem, NC. New York: ACM;
2007. p. 221-5.

2.	 Chen T, Meyer M, Ganapathi N. Implementation
considerations for improving data integrity in
normalized relational databases. In: McGregor
JD, chair. Proceedings of the 47th ACM Southeast
Regional Conference (ACMSE 2009); 2009 March
19-21; Clemson, SC. New York: ACM; 2009.
Article No. 3.

3.	 Sadri F, Ullman DJ. A complete axiomatization
for a large class of dependencies in relational
databases. In: Miller RE, Ginsberg S, Burkhard
WA, Lipton RJ, chairs. STOC ’80. Proceedings of
the Twelfth Annual ACM Symposium on Theory
of Computing; 1980 April 28-30; Los Angeles,
CA. New York: ACM; 1980. p. 117-22.

4.	 Sagiv Y, Walecka S. Subset dependencies
as an alternative to embedded multivalued
dependencies. J Assoc Comput Machinery.
1982;29(1):103-17.

5.	 Date CJ, Darwen H, Lorentzos N. Temporal data
and the relational model. 1st ed. San Francisco:
Morgan Kaufmann; 2002.

shortcomings, practitioners should carefully evaluate
the requirements at hand and apply the most
appropriate methods to deal with potential data
anomalies.

This paper provides practitioners with some
important principles that promote improved
database design and implementation by going above
and beyond the traditional normalization techniques.

References
6.	 Date CJ. An introduction to database systems.

8th ed. Reading (MA): Addison-Wesley Pub. Co;
1999.

7.	 Kroenke MD. Database processing: fundamentals,
design, implementation. New York: Macmillan
Pub. Co; 1992.

8.	 Ullman DJ. Principles of database systems.
Rockville (MD): Computer Science Press; 1982.

9.	 Fagin R. A normal form for relational databases
that is based on domains and keys. ACM
transactions of database systems (TODS).
1981;6(3):387-415.

10.	Celko J. SQL for smarties: advanced SQL
programming. 3rd ed. San Francisco: Morgan
Kaufmann; 2005.

11.	Chao L. Database development and management.
Boca Raton, FL: Auerbach Publications; 2006.

12.	Thalheim B. Entity-relationship modeling:
foundations of database technology. New York:
Springer; 2000.

13.	Date CJ. The relational database dictionary.
Sebastopol (CA): O’Reilly Media, Inc.; 2006.

14.	Rankins R, Bertucci P, Gallelli C, Silverstein
AT. Microsoft SQL Server 2005 unleashed.
Indianapolis (IN): Sams Publishing; 2007.

15.	Nielsen P. SQL Server 2005 bible. New Delhi:
Wiley-India; 2006.

Acknowledgments
We would like to thank Craig R. Hollingsworth of RTI’s Research Computing
Division for making substantial editorial contributions to this paper. We also
owe a debt of gratitude to an RTI Press senior editor, Kathleen N. Lohr, for her
invaluable suggestions on the style and substance of this paper.

RTI International is an independent, nonprofit research organization dedicated
to improving the human condition by turning knowledge into practice. RTI
offers innovative research and technical solutions to governments and businesses
worldwide in the areas of health and pharmaceuticals, education and training,
surveys and statistics, advanced technology, international development,
economic and social policy, energy and the environment, and laboratory and
chemistry services.

The RTI Press complements traditional publication outlets by providing another
way for RTI researchers to disseminate the knowledge they generate. This PDF
document is offered as a public service of RTI International.

www.rti.org/rtipress 	 RTI Press publication OP-0004-1105

	Abstract
	Introduction
	Data Dependencies and Relation Decomposition
	Data Redundancy in High-Level Normal Forms

	Method
	Identifying Functional Entanglements
	Practical Approaches for Preventing Data Anomalies

	Conclusion
	References
	Acknowledgments

