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Abstract
The traditional vertical decomposition methods in relational database 
normalization fail to prevent common data anomalies. Although a database may 
be highly normalized, the quality of the data stored in this database may still 
deteriorate because of potential data anomalies. In this paper, we first discuss 
why practitioners need to further improve their databases after they apply 
the traditional normalization methods, because of the existence of functional 
entanglement, a phenomenon we defined. We outline two methods for 
identifying functional entanglements in a normalized database as the first step 
toward data quality improvement. We then analyze several practical methods for 
preventing common data anomalies by eliminating and restricting the effects of 
functional entanglements. The goal of this paper is to reveal shortcomings of the 
traditional database normalization methods with respect to the prevention of 
common data anomalies, and offer practitioners useful techniques for improving 
data quality.
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Introduction
Today’s computer systems can store massive 
amounts of data of all types. To make searching 
enormous databases more efficient, programmers 
rely on a collection of tables, often called “relations.” 
A database built around such tables is called a 
“relational database,” and such databases are built 
to handle all types of data. For example, a survey 
system may create a searchable collection of tables 
that records respondent address, phone number, 
sex, age, survey questions, survey answers, and 
other information. A company database may have 
records representing employee name, office number, 
telephone number, e-mail, supervisor name, 
supervisor telephone number, and supervisor email, 
among other information. Relational databases 
provide a fast and efficient way to store and retrieve 
electronic data in modern computer systems.

Database designers create and work with relational 
databases on a regular basis. However, these 
practitioners can face numerous problems when 
building a database using tables. One common 
problem is data redundancy, which occurs when data 
are duplicated in a database table, or relation. These 
duplicated data can cause anomalies that affect data 
quality and provide users with incorrect information. 
Therefore, practitioners must follow certain rules 
while designing and normalizing their databases. 

The traditional method of preventing data 
redundancy and the resulting anomalies is called 
“database normalization.” In the normalization 
process, practitioners examine functional 
dependency, multi-valued dependency, project-join 
dependency, and several other data dependencies to 
decompose a relation into multiple relations. The end 
result of normalization is a set of relations that meet 
the requirements of different levels of the normal 
form. The higher the level of the normal form we 
reach in a database, the lower the possibility that data 
anomalies can occur. 

The normalization process is well defined in the 
literature and is commonly understood by database 
designers. Our experience and recent research1,2 
indicate that basic data anomalies can still exist 

in high-level normal forms even if the database 
meets all traditional normalization requirements. 
Consequently, in addition to following the traditional 
normalization methods, practitioners should strive to 
identify functional entanglements in a database and 
restrict their effects. By doing so, practitioners can 
significantly improve data quality. 

In this paper, we continue to build on these research 
findings. We first discuss methods of identifying 
functional entanglements in a normalized database. 
Then we analyze several practical approaches for 
restricting the potential effects of these functional 
entanglements. The discussion provides practitioners 
with tools they can use to improve database design 
and implementation, extending what is typically done 
during the traditional normalization process. 

Through the remainder of this manuscript, we use 
an italic font to represent the names of relations and 
fields in all our discussions and examples.

Data Dependencies and Relation 
Decomposition 
Table 1 illustrates data redundancy in the Supervisors 
relation. Notice that the employees in the first 
two rows have the same supervisor with the same 
telephone number. 

Table 1. Supervisors: display of data redundancy and 
anomaly

EmployeeName SupervisorName SupervisorPhone

Cooper Davis 888-1111

Smith Davis 888-1111

Barton Davis 888-1212

Armstrong Taylor 888-2222

In this relation, identical information on 
(SupervisorName, SupervisorPhone) can appear 
multiple times. This is an example of data 
redundancy. If one of the telephone numbers in the 
first two rows is accidentally changed, or if a new 
employee with the same supervisor (Davis) but a 
different phone number is inserted, the relation will 
provide users with inconsistent information on the 
telephone number for this supervisor. 
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In the third record of this relation, the employee has 
the same supervisor as the first two records, but for 
some reason the telephone number is different. This 
is a typical example of a data anomaly that can occur 
when a record is inserted or updated. Here, data 
redundancy directly affects data quality for users by 
providing conflicting information. Removing data 
redundancies in a relational database is an important 
technique for improving data quality.

Traditionally, relational database design relies on a 
method called “vertical decomposition” to normalize 
relations and eliminate redundancies. To illustrate the 
basic mechanism of this method, we can decompose 
the Supervisors relation into two smaller relations, 
SupervisorsNew and SupervisorPhones, as shown in 
Table 2 and Table 3, respectively.	

Table 2. SupervisorsNew: result of decomposition

EmployeeName SupervisorName

Cooper Davis

Smith Davis

Barton Davis

Armstrong Taylor

Table 3. SupervisorPhones: result of decomposition

SupervisorName SupervisorPhone

Davis 888-1111

Taylor 888-2222

After this decomposition, the system can retrieve 
the supervisor telephone number for a particular 
employee by first joining the two normalized relations 
through the common field SupervisorName. The 
decomposition removes the data redundancy, does 
not remove information presented in the original 
relation, and eliminates the original potential data 
anomaly problem. Thus, decomposition is a useful 
tool in improving data quality.

The above decomposition is based on the concept 
of functional dependency, which states that the 
value of one field (X) always determines the value of 
another field (Y) of the same row in a relation. This 
is illustrated in the relationship between the fields 

SupervisorName and SupervisorPhone in Table 3, with 
a functional dependency (denoted as X → Y) existing 
between these two fields. 

Functional dependency is the most common 
cause of data redundancy. Other less common 
data dependencies that can cause data redundancy 
are multi-valued dependency and project-join 
dependency. Researchers have also discussed other, 
rarer types of data dependency, such as “template 
dependency,”3 “subset dependency,”4 and “join 
dependency.”5 The solutions for the problems caused 
by these data dependencies all rely on vertical 
decomposition methods. 

However, our main discussion focuses on the 
problems caused by functional entanglement, 
which is in direct contrast to functional dependency. 
The problems caused by functional entanglement 
discussed in this paper cannot be solved by vertical 
decomposition. Thus, other than functional 
dependency, we do not address the other types of data 
dependencies that are mentioned in the preceding 
paragraph.

Based on different types of data dependencies, 
vertical decomposition methods can normalize a 
relational model into different levels of normal form, 
such as Boyce-Codd normal form (BCNF), 4th 
normal form (4NF), and 5th normal form (5NF). 
These normal forms are considered high level and are 
the desired goals of a database normalization process. 
The normalization process that relies on vertical 
decomposition to remove data redundancies is well 
illustrated in the literature by Date,6 Kroenke,7 and 
Ullman,8 among many others. 

Data Redundancy in High-Level Normal 
Forms 
Although vertical decomposition is the most 
commonly accepted method, its inability to 
completely eliminate some very common data 
redundancies is often overlooked. Practitioners 
should consider steps beyond vertical decomposition 
to prevent data anomalies.1,2 To illustrate this need, 
we present the Employees relation described in 
Table 4.
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Table 4. Employees: A normalized relation that 
contains data redundancy

EmployeeID Title Sex Last Name

101 Mr M Cooper

102 Mr M Smith

103 Dr F Armstrong

104 Dr M Davis

105 Ms F Taylor

In this relation, data redundancy exists between 
fields Title and Sex in the first two rows. The value 
set (Mr, M) in (Title, Sex) appears twice in Table 4, 
and it would likely occur many times in the entire 
relation. This kind of data redundancy can cause data 
anomalies when records are inserted or updated. 
However, because the value “Dr” in Title of rows 3 
and 4 is associated with two different values in Sex, 
a functional dependency relationship does not exist 
between Title and Sex. Thus, database designers 
cannot use decomposition methods to normalize 
this relation despite the common data redundancy 
we have observed. Therefore, if we assume the field 
EmployeeID can uniquely identify a row in this 
relation, we can simply designate this field as the 
primary key for the Employees relation. This relation 
is in 5NF, based on the normal form definition and 
despite the data redundancy and potential data 
anomalies. 

The domain/key normal form (DKNF) does not 
permit this kind of data redundancy. A relation is in 
DKNF if and only if every constraint on the relation 
is a logical consequence of the definition of keys 
and domains.9 A relation “key” is a field or a set of 
fields whose values can uniquely identify a row in 
the relation. Because we assume that EmployeeID can 
uniquely identify a row in the Employees relation, we 
can set this field as the relation key. The “domain” of 
a field is the set of all possible values that the field can 
take in the relation. For example, it is desirable to set 
the domain of Sex in the Employees relation as {M, F}. 
DKNF requires that all database design specifications 
be defined in terms of keys and domains. Because 
the interrelationship between Title and Sex in this 
example is not a constraint that can be defined by 
domains or keys, the Employees relation is not in 
DKNF. However, researchers have noted10-12 that 

no direct algorithms exist by which to reach DKNF, 
and implementing DKNF is impractical for several 
reasons.

To better understand the data dependency that 
occurs in Table 4, Chen et al.1 proposed a concept 
called “functional independency” that practitioners 
can apply to prevent data anomalies in database 
designs. Functional independency is based on the 
observation that two fields that are not functionally 
dependent on each other may sometimes still 
relate to each other: that is, they may not in fact be 
functionally independent from each other. Functional 
independency is defined as follows:

Given a relation R, field X of R is functionally 
independent on field Y of R (noted as X><Y) if and 
only if, for any instance xi∈Domain(X) and any 
instance yj∈Domain(Y), instance (xi, yj) is always 
valid for set of fields (X, Y) in R.1

We noted earlier that the fields Title and Sex in the 
Employees relation are not functionally dependent 
on each other. Neither are they functionally 
independent, because some values in these two fields 
cannot appear together in a given row. For example, 
there should never be a record in this relation with 
value (Ms, M) in (Title, Sex). We define this kind 
of data dependency, which is between the states of 
functional dependency and functional independency, 
as “functional entanglement” throughout this paper. 

Functional entanglements, like the interrelationship 
between Title and Sex in the Employees relation, 
cannot be automatically removed by the traditional 
vertical decomposition methods. This characteristic 
separates functional entanglement from all other data 
dependencies mentioned in this paper so far.

As we have seen from the Employees relation 
(Table 4), if two fields are not functionally dependent 
on each other but are interrelated through functional 
entanglement, data anomalies may occur and data 
quality can suffer. Database practitioners should 
be alert to the problems caused by functional 
entanglements in a normalized database so that they 
can identify them and restrict their effects. 

In the following section, we explore the causes of 
common functional entanglement and analyze 
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potential practical solutions to improve data quality 
without the need to comply with the strict and 
sometimes impossible DKNF criteria.

Method
Throughout this paper, we use a fictitious electronic 
human resources (eHR) system as an example to 
illustrate different data anomaly problems and 
examine potential solutions. In the eHR model, each 
employee is identified with a unique EmployeeID, as 
we showed in the Employees relation in Table 4. 

In the following section, we examine several examples 
to investigate how different types of functional 
entanglement can exist in high-level normal forms. 
We follow that discussion with a section describing 
how practitioners can better deal with weaknesses 
resulting from functional entanglements.

Because fields in a database model can relate to 
each other in multiple ways, and because functional 
entanglements can appear in many different forms, 
trying to identify all the functional entanglements 
can be difficult. This is one reason that DKNF is so 
difficult to achieve. Our objective in this paper is 
not to provide an optimal or perfect database design 
methodology. Rather, we aim to help practitioners 
identify the weaknesses in real-world database 
models so they can take constructive and important 
steps to improve data quality. 

Identifying Functional Entanglements
In this section, we discuss two methods for 
identifying some of the most common functional 
entanglements. The first method is based on detection 
of “subdomain dependencies.”

Detecting Subdomain Dependencies
The cause of the data redundancy problem in 
the Employees relation (Table 4) is a functional 
dependency relationship between a domain subset of 
Title ({Mr, Ms}) and Sex ({M, F}). This phenomenon 
is called a subdomain dependency and defined 
formally as follows:

Given a relation R, field Y of R is functionally 
dependent on field X of R in subdomain (noted as 
X →s Y) if and only if,

1.	 X → Y does not hold, and

2.	 There exists at least one instance  
xi∈Domain(X) so that xi is associated with  
one and only one Y-value in R.1

In other words, between fields X and Y, functional 
dependency appears in a subset of instances, but 
we cannot establish such a relationship for the 
entire two fields. Because subdomain dependencies 
have characteristics similar to those of functional 
dependencies, data redundancies caused by 
functional dependencies can similarly appear in 
subdomain dependencies. The partial dependencies 
and transitive dependencies that are supposedly 
removed by the low-level 2nd normal form (2NF) 
and 3rd normal form (3NF) can still appear through 
subdomain dependencies in high-level normal forms. 

Using a decomposition method is feasible only when 
we can establish functional dependency between 
two entire fields. Owing to the nature of subdomain 
dependency, in which functional dependency occurs 
only between domain subsets of the fields but not in 
their entire domains, database designers cannot use 
decomposition methods to remove data redundancies 
caused by this kind of dependency.

Subdomain dependency is a specific type of func
tional entanglement. Detecting subdomain 
dependencies is the first extra step a practitioner 
should consider after having applied the traditional 
normalization methods. This process is similar to 
that of identifying functional dependencies. The 
clues that allow us to detect subdomain dependencies 
usually reside in the data modeling specifications. 

The eHR model we are using as example needs to 
capture the employment status of each employee. 
An employee is hired on either a full-time 
(denoted as FT) or hourly (denoted as PT) basis. 
The model also needs to keep the ratio of hours 
to full-time employment for every employee, so 
that administrators can calculate payment scales 
and benefits. For a full-time employee, the ratio 
is always 1. For an hourly employee, this ratio is 
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between 0 and 1. We designed the Employment 
relation shown in Table 5 to capture this information.

Table 5. Employment: a normalized relation with 
subdomain dependency

EmployeeID EmploymentStatus EmploymentRatio

101 FT 1

102 FT 1

103 PT 0.5

104 PT 0.75

105 FT 0.5

In this example, we cannot establish functional 
dependency between fields EmploymentStatus 
and EmploymentRatio because value “PT” in 
EmploymentStatus is associated with multiple 
values in EmploymentRatio. But we can identify the 
following subdomain dependency:

EmploymentStatus →s EmploymentRatio

This dependency exists because if EmploymentStatus 
is “FT,” then EmploymentRatio must be 1. With this 
subdomain dependency, data anomalies, such as the 
record with EmployeeID 105 in Table 5, may occur 
after record insertion or update, despite the fact that 
we can designate EmployeeID as the primary key and 
this relation is in 5NF. The clue to help identify this 
subdomain dependency is within the statement in the 
requirement specifications: “For a full-time employee, 
the ratio is always 1.” 

Subdomain dependencies are a common problem in 
relational databases. If a practitioner does not make 
an extra effort to identify and restrict their effects, 
data redundancies can cause significant data quality 
problems. 

As another example of the complexities of these 
potential dependencies, the eHR model needs to store 
address information for the employees. Each address 
record contains street number, street name, city, state, 
and zip code. Some zip codes are uniquely associated 
with certain cities and states. Some cities have multiple 
zip codes, and a zip code can sometimes be used for 
multiple cities in the same state. One zip code can also 
potentially cross state lines in special areas such as 
military bases. Finally, the same city name can appear 
in different states. We designed the EmployeeAddresses 
relation shown in Table 6 to store the address 
information. 

Because of the specified requirements of city, state, and 
zip code, we cannot establish functional dependencies 
among these three fields because some zip codes are 
used for more than one city or state. Although this 
relation is in 5NF with EmployeeID as the primary key, 
the following subdomain dependencies exist.

Zip Code →s State, and
Zip Code →s City.

This situation arises because of the requirement 
“some zip codes are uniquely associated with 
certain cities and states,” while some zip codes can 
be used for multiple cities or even states. From 
this example we can again observe: one can spot 
subdomain dependency information from the design 
requirements that describe the characteristics of the 
data.

Because of these subdomain dependencies, data 
redundancies are widespread in the EmployeeAddresses 
relation. The same value in (City, State, Zip Code) 
appears multiple times, as in rows 1 and 2, and 
redundancy on (State, Zip Code) is visible in rows 4 
and 5. These data redundancies are the prime sources 

Table 6. EmployeeAddresses: another example of subdomain dependency

EmployeeID Street Number Street Name City State Zip Code

101 101 1st Ave. Cleveland AL 35049

102 233 2nd Ave. Cleveland AL 35049

103 125 A Drive Birmingham AL 35215

104 256 B Drive Hoover AL 35216

105 54 C Drive Birmingham AL 35216

106 808 White Rd. Birmingham AL 35049
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for data anomalies. The record with EmployeeID 
106 is an example of data anomaly among city, state, 
and zip code. In reality, zip code 35049 is not valid 
for Birmingham, AL, but the current design cannot 
prevent this record from being introduced into the 
relation by record insertion or update.

Subdomain dependencies are a common 
phenomenon in a relational database. Practitioners 
should attempt to detect subdomain dependencies 
after applying the traditional database normalization 
methods. 

Identifying Restricted Domains
Functional entanglements can appear in forms 
other than subdomain dependency. To illustrate 
these functional entanglements, we first introduce 
two terms related to field domain—“unrestricted 
domain” and “restricted domain.” Specifically, for any 
given field, if all possible values in its domain can be 
assigned to any record in this field, we call the domain 
of this field an unrestricted domain; otherwise, we 
call it a restricted domain. 

The value in a field of a given row can be restricted in 
one of two ways: (1) by other values in the same field 
of other records, or (2) by the values in another field 
of the same record. We can observe these two types of 
restriction in the example that follows. 

The eHR system needs to keep track of the total 
number of advanced degrees each employee has 
obtained; it also needs to record, among those 
degrees, how many are related to information 
technology (IT). We can design a 5NF relation 
denoted Degrees (EmployeeID, Total_Degree, IT_
Degree), with EmployeeID as the primary key. The 
domains of all three fields are nonnegative integers. 
Total_Degree and IT_Degree give the total number of 
advanced degrees and IT-related advanced degrees, 
respectively, per employee. Table 7 shows a few rows 
of this relation.

Table 7. Degrees: a relation with restricted domains

EmployeeID Total _Degree IT_Degree

101 1 0

102 1 1

103 1 2

In this relation, the EmployeeID field has a restricted 
domain because of the uniqueness requirement of its 
values. If we need to insert a new row in Table 7, the 
EmployeeID of the new record must not duplicate any 
of the values that have already been assigned to other 
records in this field. Therefore, the domain of this 
field is restricted by other existing values in the same 
field.

Total_Degree and IT_Degree also have restricted 
domains. This is because in any given row, the value 
of IT_Degree must be no greater than the value of 
Total_Degree. Once we assign a value to Total_Degree, 
we cannot assign a greater value to IT_Degree in 
the same row. Similarly, if we have assigned a value 
to IT_Degree in a given record, we cannot assign a 
smaller value to Total_Degree of the same record. Said 
another way, the value (1, 2), shown for EmployeeID 
103 in Table 7, is invalid for (Total_Degree, 
IT_Degree); the person could not have more advanced 
IT degrees than total professional degrees. In short, 
not all possible values in the two domains are free 
to be assigned to all rows of these two fields in this 
relation. The values in these two fields are causing 
domain restrictions for each other. Because our goal 
is to identify functional entanglements among fields, 
we are interested only in the restricted domains that 
are caused by values in other fields of the same row.

The subdomain dependency discussed in 
the Employment relation (Table 5) and the 
EmployeeAddress relation (Table 6) is a specific 
appearance of restricted domain. In the Employment 
relation, the fields EmploymentStatus and 
EmploymentRatio are restricting each other’s domain. 
However, the interrelationship between Total_Degree 
and IT_Degree is not one of subdomain dependency. 
In subdomain dependency, some values in a field 
can uniquely determine the values in another field. 
However, the value of Total_Degree or IT_Degree in 
a given row can determine only the range of values 
in the same row of the other field, not the specific 
value. Any time that a field’s domain is restricted by 
the values of another field in a relation, functional 
entanglements and potential data anomalies exist. 
In the Degrees relation of Table 7, the value (1, 2) is 
a data anomaly for (Total_Degree, IT_Degree). No 
mechanisms in the current design can prevent this 
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value from being inserted or updated into the Degrees 
relation, which is in 5NF. 

Analyzing the domain of each field in a relation can 
help root out functional entanglements. If database 
designers detect any fields with restricted domains 
caused by the values of another field, then they 
need to provide an extra mechanism to prevent 
data anomalies. We can look at another example to 
illustrate how analyzing the domains of fields can help 
identify functional entanglements in a relation. So far, 
in all our examples, functional entanglements among 
fields appear within the same relations. Sometimes, 
however, similar functional entanglements can come 
from different relations, as illustrated by considering 
salary information as yet another part of the 
hypothetical eHR system.

The eHR system keeps salary information for all 
employees. Each employee belongs to a salary grade 
that is identified with an alpha character, and each 
employee has a current (annual) salary (denoted here 
in US$, rounded to the nearest $1,000). In addition, 
each salary grade is associated with a minimum salary 
value. The annual salary of an employee must be 
greater than or equal to the minimum salary of the 
grade that he or she is in.

We can achieve 5NF by designing two relations: 
EmployeeSalary(EmployeeID, SalaryGrade, Salary) 
as shown in Table 8, and Grade (SalaryGrade, 
MinimumSalary), as shown in Table 9.

Table 8. EmployeeSalary: functional entanglement 
caused by restricted domain

EmployeeID SalaryGrade Salary

101 A 52,000

102 B 63,000

103 C 68,000

Table 9. Grade: functional entanglement caused by 
restricted domain

SalaryGrade MinimumSalary

A 50,000

B 60,000

C 70,000

The functional dependencies in this model are as 
follows:

EmployeeID → SalaryGrade
EmployeeID → Salary
SalaryGrade → MinimumSalary

The domains of each field are as follows:

EmployeeID	 : any nonnegative integers
SalaryGrade	 : any single alpha characters
MinimumSalary	 : any positive decimal numbers
Salary	 : any positive decimal numbers

If we further examine the domain of each field 
in these two relations, we find two additional 
requirements:

1.	 For any row in EmployeeSalary, the value of 
SalaryGrade must be one of the values in the field 
that bears the same name in the Grade relation.

2.	 For any row in EmployeeSalary, the value of 
Salary must be greater than or equal to the value 
in MinimumSalary in the row with a matching 
SalaryGrade in the Grade relation.

We can address the first requirement by simply 
using the well-known and commonly used 
technique of enforcing a foreign key constraint on 
the field SalaryGrade from the Grade relation to 
EmployeeSalary. The second requirement indicates 
that the domains of SalaryGrade and Salary in the 
EmployeeSalary relation are restricted. The domain of 
Salary in the EmployeeSalary relation is restricted by 
the values in MinimumSalary in the Grade relation 
through the common field SalaryGrade. Because of 
these restricted domains, functional entanglements 
exist in this relation design. 

As we can see in Table 8, the third record (namely, 
EmployeeID 103) contains a data anomaly because 
the salary is lower than the minimum value of the 
corresponding grade. Unfortunately, we cannot 
prevent this record from being inserted or updated 
into this 5NF relation based on the current design. In 
short, the correlation between restricted domains and 
data anomalies is clear.

In conclusion, by detecting subdomain dependencies 
and identifying restricted domains, we can determine 
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whether a database design contains functional 
entanglements. In the next section, we analyze 
practical approaches to eliminate or prevent data 
anomalies caused by functional entanglements.

Practical Approaches for Preventing Data 
Anomalies
Chen et al.2 proposed three practical methods for 
preventing data anomalies caused by functional 
entanglements. We summarize them briefly below, 
explore their applicability, and discuss their strengths 
and shortcomings in dealing with different types of 
functional entanglement. Following that discussion, 
we introduce and analyze another practical method 
that can be applied to prevent data anomalies.

Preventing Data Anomalies by Changing 
Relation Design
As shown in the previous section, after having 
normalized a database into BCNF or even 5NF 
with the vertical decomposition method, database 
designers need to take further steps to refine their 
databases to prevent data anomalies. One of these 
steps is to analyze and modify the data model at the 
design level. Two main options of changing relation 
design are available to achieve this objective: field-
level disentanglement and horizontal decomposition.

Field-Level Disentanglement
The first option, which we call “field-level disentangle
ment,” seeks to untangle data interrelationships at 
the field level. We can demonstrate this approach by 
further analyzing the relation Degrees(EmployeeID, 
Total_Degree, IT_Degree) shown in Table 7, in 
which both Total_Degree and IT_Degree have 
restricted domains because they do not represent 
two disjoint subsets in terms of categorical 
classification of degrees. In essence, IT_Degree is a 
part of Total_Degree. Hence, there is a constraint, 
Total_Degree ≥ IT_Degree, for all rows. This 
constraint can lead to data anomalies, although the 
relation is already in 5NF and cannot be further 
decomposed. 

To remove the restricted domains in this relation, 
we can change the relation design by using disjoint 
subsets. In this particular example, we can replace 
the field Total_Degree with Non_IT_Degree; this field 

would then reflect the number of professional degrees 
that are not IT-related for each employee. The new 
relation, EmployeeDegrees, is as follows:

EmployeeDegrees(EmployeeID, Non_IT_Degree,  
IT_Degree), where Total_Degree  
= Non_IT_Degree + IT_Degree.

After the redesign, the fields Non_IT_Degree and 
IT_Degree represent two disjoint and mutually 
complementary subsets. Because no restrictions exist 
on how the values of these two fields can be assigned 
in any rows, these two fields both have unrestricted 
domains. This new design eliminates the potential of 
data anomalies. In addition, because the value of the 
original Total_Degree can be derived from the sum 
of Non_IT_Degree, and IT_Degree,, no information 
is lost from the original relation model. This example 
demonstrates that both relations Degrees and 
EmployeeDegrees are in 5NF, but EmployeeDegrees 
is better than Degrees at preventing data anomalies. 
One important point about this improvement is that 
EmployeeDegrees is a product of relation redesign 
rather than decomposition. 

This example also highlights the importance of 
further actions after database designers have applied 
the traditional decomposition methods when 
designing a database. Practitioners should analyze 
functional entanglements and continue to refine the 
design of relations as an integral part of normalizing 
a database. When a field exists that is a subset of 
another field in terms of categorical classification, 
like Total_Degree and IT_Degree in Degrees, or when 
mathematical or logical interrelationships exist 
among fields, this relation will usually have insertion 
and update anomalies that vertical decomposition 
methods cannot remove. If we identify restricted 
domains in a relation, we can first consider using the 
field-level disentanglement method, which redesigns 
the relation model to improve data quality.

The main advantage of the field-level disentanglement 
method is that changes are made at the design level: 
database designers should thus encounter little or no 
additional cost at the programming or production 
levels. Once practitioners apply this method 
successfully, functional entanglements and the 
resulting insertion and update anomalies no longer 
exist, even before the database is implemented. This 
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process is efficient and straightforward; it does not 
require any other database system tools to enhance 
data quality.

Although the field-level disentanglement method 
is very effective in disentangling data dependencies 
caused by categorical classification and logical 
or mathematical interrelationships, this method 
does have a disadvantage: its usefulness in other 
situations is limited. Usually, this method works only 
when functional entanglements occur at the field 
level for all rows. For example, it cannot be used to 
solve the data anomaly problems for the relation 
EmployeeAddresses (Table 6), because the subdomain 
dependencies only affect a subset of rows. 

Horizontal Decomposition
Our second option to eliminate restricted domains at 
the design level is to use horizontal decomposition. 
Database designers can apply this method to 
normalize some relations into DKNF in certain 
situations.6 As the name suggests, this method 
decomposes a relation horizontally by splitting a 
relation into multiple relations with the same table 
structure. It targets mainly relations with restricted 
domains that are caused by a limited number of 
domain subsets. Practitioners use decomposition 
along the line of these domain subsets to remove the 
restrictions on domains. 

The relation Employment(EmployeeID, 
EmploymentStatus, EmploymentRatio) of Table 5 
illustrates this approach. According to the horizontal 
decomposition method, we can split Employment into 
two smaller relations with identical structure:

•	 Employment_WholeRatio(EmployeeID, 
EmploymentStatus, EmploymentRatio), which holds 
only full-time employees with  
EmploymentStatus=“FT” and  
EmploymentRatio =1, and 

•	 Employment_PartialRatio(EmployeeID, 
EmploymentStatus, EmploymentRatio),  
which holds only hourly employees with  
EmploymentStatus=“PT” and  
0 ≤ EmploymentRatio ≤ 1.

After the decomposition, the domains of fields 
EmploymentStatus and EmploymentRatio in the 
new relations are no longer restricted, and the new 
model eliminates potential data anomalies. As a 
result, subdomain dependency EmploymentStatus →s 
EmploymentRatio no longer exists in either relation. 

Although the horizontal decomposition method 
is simple and straightforward, its drawbacks may 
outweigh its benefits. The method has not been 
commonly adopted since its debut. First, this method 
increases the complexity of a system and the cost 
of maintenance. When introducing a new record, 
the programmer must know in which relation to 
insert this record. Merely updating the value of 
a row may also require the row to be moved to 
another relation. Second, this method may cause the 
information in the database to be widely scattered. 
Using this method to decompose the EmployeeSalary 
relation (Table 8), for instance, may produce quite 
a few decomposed relations, one for each possible 
salary grade, which makes queries for information 
extremely difficult. Finally, although the horizontal 
decompositions appear to have normalized some 
relations into DKNF, they can also inadvertently 
introduce a new constraint that requires the 
decomposed relations to maintain the same or similar 
structure. If database designers need to change the 
design of one relation, they must also make the same 
change to multiple relations. This kind of redundancy 
adds costs to maintaining the database. Furthermore, 
this new constraint in itself violates the definition of 
DKNF. 

We demonstrated above that by changing relation 
design, practitioners can prevent data anomalies in 
certain situations. We also noted that these methods 
have limitations. When changing the design is not 
feasible, we can consider employing some existing 
relational database management system (RDBMS) 
tools in the implementation stage. 

Next, we demonstrate how to use these standard 
RDBMS tools to restrict or reduce the effects of 
functional entanglement to prevent data anomalies. 
These tools are not new techniques per se, and our 
intention is not to explain what they are and how they 
work. Rather, we explain how to use those tools and 
techniques to handle functional entanglements. 
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Preventing Data Anomalies by Utilizing RDBMS 
Tools

Implementing Lookup Relations 
One approach based on using RDBMS tools 
involves enforcing referential integrity and using 
lookup relations. As the name suggests, lookup is 
a referencing mechanism that allows the values of 
certain fields of a relation to be verified by the values 
of the same fields in another relation. 

To establish a lookup relationship, practitioners can 
first build a lookup relation with all possible values 
in certain fields. They can then enforce referential 
integrity on the referencing relation to the lookup 
relation by using a foreign key constraint. This 
mechanism ensures that the values of the underlying 
fields in the referencing relation are validated 
whenever a row is inserted or updated. 

Referential integrity is a well-known and widely used 
technique in database implementation. It ensures 
that different relations are properly related in a 
database.13 To illustrate how this method can reduce 
data anomalies, we return to the EmployeeAddresses 
relation (Table 6). In this relation, data anomalies 
arise because of subdomain dependencies among zip 
code, city, and state. The first step of improvement is 
to build an additional relation that holds all possible 
valid values of zip code, city and, state. Table 10 
shows a few records of the relation Zipcodes (Zip 
Code, City, State). This relation serves a lookup 
purpose for the matched fields in the referencing 
EmployeeAddresses relation. In this lookup relation, 
because no functional dependencies arise among Zip 
Code, City, and State, all three fields are part of the 
primary key. 

Table 10. Zipcodes: lookup relation with all possible 
underlining values

Zip Code City State

35049 Cleveland AL

35215 Center Point AL

35215 Birmingham AL

35216 Hoover AL

35216 Birmingham AL

35220 Center Point AL

After we build a lookup relation of this sort, we can 
set up a foreign key constraint so that fields Zip Code, 
City, and State in EmployeeAddresses are linked to the 
corresponding fields in Zipcodes. A generic structured 
query language (SQL) statement for defining 
referential integrity for this model is shown below:

ALTER TABLE [dbo].[ EmployeeAddresses] WITH CHECK  
ADD CONSTRAINT [FK_EmployeeAddresses_Zipcodes] 
FOREIGN KEY 	 ([Zip Code],
	 [City], 
	 [State])  
REFERENCES [dbo].[Zipcodes]
	 ([Zip Code],
	 [City], 
	 [State])†

Once we enforce referential integrity in this way, 
every time a row in EmployeeAddresses is inserted 
or updated, the City, State, and Zip Code values are 
validated through the Zipcodes relation. The insert or 
update operation will succeed only when a row with 
matching values in all three fields in Zipcodes exists. 
By keeping clean records in Zipcodes, we can largely 
prevent invalid entries in the EmployeeAddresses 
relation. 

The main advantages of defining referential integrity 
in a database are improved data quality and 
consistency. Because referential integrity is declared 
at the design level, custom programming is not 
needed. This advantage in turn eliminates unintended 
programming errors. The data are kept valid and 
intact by the database itself.

The lookup relation method has some disadvantages. 
First, subdomain dependencies still exist in Zipcodes, 
and data anomalies may still occur in this lookup 
relation. If the content in a lookup relation is not 
valid, then the data quality of the main relation can 
erode. This erosion can in turn affect the maintenance 
costs of keeping the correct content in the lookup 
relation. Second, this method requires an increased 
level of processing to validate data, and it increases 
the complexity of the data model by introducing 
more relations. Third, using cascading deletes and 
updates, which database servers offer as a built-
in option to maintain data integrity, may cause 

†	 When writing SQL statements in this paper, we are using SQL Server 
2005 syntax.
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inadvertent loss of data without the user’s knowledge. 
Finally, if the lookup values require constant updates 
or user manipulations, this method will increase the 
processing burden and possibly cause potential data 
errors in the main relation.

By understanding the drawbacks of the lookup 
relation method, we can determine when to apply 
it. This method works best in situations that have 
finite, predefined, stable, and standard lookup values, 
such as zip code data (which can be purchased and 
do not require constant user manipulations). This 
method is also helpful for alleviating the problem 
explained in the Employees relation shown in Table 4 
by predefining a set of finite values for (Title, Sex) 
in a lookup relation. If building such a lookup 
relation is impossible or not appropriate, such 
as in the Employment relation of Table 5 and the 
EmployeeSalary relation of Table 8, using this method 
is not suitable. 

Utilizing Check Constraints
In the examples of the Employment and 
EmployeeSalary relations above, we demonstrated 
how to detect functional entanglements by 
identifying subdomain dependencies and restricted 
domains. In these two examples, creating lookup 
relations to prevent data anomalies was impossible 
because of the infinite number of possible lookup 
values. However, in similar situations, the “check 
constraints” method is effective in preventing data 
anomaly problems. 

Check constraints are fast, row-level integrity checks 
offered by most database servers as a standard, 
built-in RDBMS tool. Traditionally, RDBMS check 
constraints are designed to limit the domain scope of 
a field. Using check constraints can improve domain 
integrity by limiting a field to a set of allowable 
values.14 For example, when implementing the 
Employees relation in Table 4, the data type of field 
Sex can be defined only as a one-character string 
in the database. Without a check constraint, we 
can assign any character to this field, which could 
obviously introduce a considerable number of data 
problems. If database designers want this field to 

take only a value of {F, M} and nothing else, a check 
constraint can be defined as follows:

ALTER TABLE [dbo].[Employees] WITH CHECK 
ADD CONSTRAINT [CK_Employees_Sex] 
CHECK ([Sex] = ‘F’ or [Sex] = ‘M’)

This same technique can help prevent data anomalies 
caused by functional entanglements. For example, 
we can build a check constraint as follows for the 
Employment relation (Table 5):

ALTER TABLE [dbo].[Employment] WITH CHECK 
ADD CONSTRAINT [CK_StatusRatio] 
CHECK (([EmploymentStatus] = ‘FT’ and  
		  [EmploymentRatio] = 1) or  
	 ([EmploymentStatus] = ‘PT’ and  
		  [EmploymentRatio] >= 0 and  
		  [EmploymentRatio <= 1))

Once the check constraint is implemented, any 
attempts to insert or update a row in the Employment 
relation with an invalid combination in 
(EmploymentStatus, EmploymentRatio) will fail. 
Similarly, a check constraint can be devised to 
prevent data anomalies in the EmployeeSalary relation 
(Table 8) as follows:

ALTER TABLE [dbo].[ EmployeeSalary] WITH CHECK  
ADD CONSTRAINT [CK_SalaryGrade] 
CHECK (([SalaryGrade] = ‘A’ and [Salary] >= 50000) or  
	 ([SalaryGrade] = ‘B’ and [Salary] >= 60000) or  
	 ([SalaryGrade] = ‘C’ and [Salary] >= 70000))

When this check constraint is implemented, any 
attempts to insert or update a row in EmployeeSalary 
with an invalid salary grade, or with an out-of-range 
salary value, will cause the RDBMS to generate an 
error and the operation will fail. 

The main advantages of the check constraint method 
are its simplicity and its ability to handle situations 
that the other methods discussed cannot. This method 
is considerably faster than using lookup relations and 
other RDBMS tools.15 In some instances, the check 
constraint method can also simplify the relation 
model. In the example involving the EmployeeSalary 
relation, the Grade relation may no longer be 
needed if the business model does not use it for 
purposes other than limiting the salary values in the 
EmployeeSalary relation.

The main disadvantage of the check constraint 
method is that it is difficult to maintain. If frequent 
changes are needed to the information related to 
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the minimum value of each salary grade in the 
EmployeeSalary relation, or adding or deleting salary 
grade has to be done on a regular basis, then database 
administrators will constantly need to change 
the SQL code in the check constraint definition. 
The additional custom programming required to 
implement and maintain check constraints can 
itself be a source of errors. In addition, with the 
check constraint method, some useful information 
is hidden in SQL code, and the information is not 
available through database queries. 

Also, in most database servers, a check constraint is 
limited to checking information within one relation. 
Querying information in another relation in a check 
constraint is impossible.15 For example, with respect 
to the salary and grade example, it would be ideal 
if the check constraint could query into the Grade 
relation to retrieve the value of MinimumSalary for 
a given SalaryGrade. This would mean keeping both 
relations (EmployeeSalary and Grade) while making 
the constraint simpler and easier to implement and 
maintain. It would also mean making the minimum 
salary information available via database queries. 
Because this querying mechanism is not possible 
via a check constraint method, the usefulness of this 
method is limited.

The check constraint method is effective for 
enforcing general data validation rules or simple 
business rules. The checks are usually very easy to 
implement if the functional entanglement is based 
on simple logic, such as in the Employment relation 
of Table 5. However, when no clear logic for the 
rules among fields exists in a relation, such as the 
EmployeeAddresses relation (Table 6), this method 
cannot apply. 

When all the above methods fail to eliminate data 
anomalies, we recommend that practitioners consider 
database triggers, as we describe next. 

Implementing Database Triggers
A database trigger can be defined as a special type of 
stored procedure that is executed automatically based 
on the occurrence of a database event.14 A trigger 
ensures that specific events of data insertion, update, 
or deletion cause the database to automatically 
execute the programming code written in the 

corresponding trigger. The stored procedure in a 
database trigger can perform virtually any operation 
in a database. Therefore, using database triggers can 
be a powerful tool in preventing data anomalies. 
Unlike other RDBMS tools mentioned earlier, the 
functionality of a database trigger goes beyond 
enforcing data rules. Therefore, practitioners should 
exercise caution when designing and implementing 
them.

A database trigger can perform all data validations 
that are enforceable with check constraints. An 
example of how to implement a trigger for the 
Employment relation of Table 5 is as follows:

ALTER TRIGGER [dbo].[EmployeeID] ON [dbo]. 
				   [Employment] AFTER INSERT AS 
BEGIN 
	 SET NOCOUNT ON; 
	 DECLARE @EmploymentCount int

	 SELECT @EmploymentCount = count(*) 
	 FROM [dbo].Inserted 
	 WHERE (([EmploymentStatus] = ‘FT’ and  
				   [EmploymentRatio] = 1) or 
			  ([EmploymentStatus] = ‘PT’ and  
				   [EmploymentRatio] >= 0 and 
				   [EmploymentRatio <= 1))

	 IF @EmploymentCount <= 0  
	 BEGIN 
		  ROLLBACK TRANSACTION 
		  RAISERROR (‘Invalid Employment Status or  
		  out of range Employment Ratio’ , 10, 1) 
	 END 
END

This is a typical insert trigger. The database server 
executes the above SQL code every time a row is 
inserted into the Employment relation. The content 
of the inserted row is temporarily stored in a one-
row relation named “Inserted” that is available for 
data validation by the trigger. When this trigger is 
implemented, any attempts to insert a row in the 
Employment relation with invalid combinations in 
(EmploymentStatus, EmploymentRatio) will fail. A 
similar mechanism can be implemented separately 
for other data events such as row update or deletion.

One advantage of database triggers over check 
constraints is their ability to perform relation queries. 
With respect to the EmployeeSalary relation, for 
instance, we noted that the ideal approach would be 
to keep both relations EmployeeSalary and Grade and 
build a relationship between them to validate data. 
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This kind of relationship is not possible with check 
constraints, but it is with a database trigger, which 
can be done as follows:

ALTER TRIGGER [dbo].[SalaryRequirement] ON [dbo]. 
		  [EmployeeSalary] AFTER INSERT AS  
BEGIN 
	 SET NOCOUNT ON; 
	 DECLARE @SalaryCount int

	 SELECT @SalaryCount = count(*) 
	 FROM [dbo].Grade G, Inserted I 
	 WHERE (I.SalaryGrade = G.SalaryGrade) and  
		  (I.Salary >= G.MinimumSalary)

	 If @SalaryCount <= 0 
	 BEGIN 
		  ROLLBACK TRANSACTION 
		  RAISERROR (‘Invalid Salary Grade  
			   or out of range Salary value’ , 10, 1) 
	 END 
END

When this trigger is implemented, any attempt 
to insert a row into EmployeeSalary will cause 
the RDBMS to query and compare the salary 
information with the MinimumSalary value in the 
Grade relation based on the value of SalaryGrade. If 
the row that is supposed to be inserted has an invalid 
salary grade, or has an out-of-range salary value, the 
RDBMS will generate an error and the insertion will 
fail. This type of data validation can be a useful tool 
for maintaining data quality.

The main benefits of using database triggers are 
flexibility and power. The stored procedure triggered 
by a data operation of a relation can provoke any SQL 
code. This allows practitioners to build numerous 
features, such as a relation query, as discussed earlier, 
into their databases. Moreover, a trigger can enforce 
data validation rules at the row level as well as the 
field level. For example, if a condition is imposed 
on the Grade relation (Table 9) such that the total 
number of different grades should be 20 or fewer, 
then this condition would require data validation 
that this relation can contain only up to 20 rows. 
No other RDBMS tools, other than an insert trigger, 
can enforce this requirement. Compared with other 
RDBMS tools in general, and check constraints 
in particular, a database trigger offers superior 
functionality in many aspects. Using triggers 
correctly often leads to improved data quality. 

Nevertheless, implementing database triggers has 
potential drawbacks. First, comparing the solutions 
offered by check constraints and database triggers 
on the Employment relation above, we can see that 
programming a trigger is more complicated than 
programming a check constraint. Moreover, a 
check constraint performs data validation on both 
record insertion and update. Practitioners need to 
implement triggers for relation insertion and update 
separately, with very similar code. Consequently, 
when we need to change data validation rules, we 
have to alter the program in multiple places. 

A second potential drawback is that, because a 
database trigger is so powerful, it can easily cause 
unintended consequences. For example, a trigger 
in a relation can cause a data operation in another 
relation with a trigger that provokes a data operation 
in the first relation. This can cause a recursive 
execution of triggers that may damage or destroy 
the database. Third, though powerful, database 
triggers have their own limitations. For example, 
we have not found an effective solution using a 
database trigger to address the data anomaly issue 
in the EmployeeAddresses relation (Table 6) without 
first building a lookup relation, as stated above. The 
business rules that dictate the relationship among 
city, state, and zip code are too complicated to be 
captured in a database trigger without some kind of 
lookup function.

Conclusion
In creating and maintaining relational databases, 
merely meeting the traditional normalization 
requirements is not enough to eliminate some basic 
data anomalies. Common data anomalies can exist in 
high-level normal forms because of the existence of 
functional entanglements. By identifying functional 
entanglements in a database and restricting their 
effects, practitioners can greatly improve data quality. 

We introduced two different methods to identify 
functional entanglements by detecting subdomain 
dependencies and restricted domains. We also 
examined two methods of eliminating functional 
entanglements at the design level in a normalized 
database: field-level disentanglement and horizontal 
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decomposition. Finally, we analyzed three other 
practical approaches for restricting the effects 
of functional entanglements with RDBMS tools: 
building lookup relations, utilizing check constraints, 
and implementing database triggers. 

Each solution presented in this paper has its 
strengths and shortcomings when handling different 
types of problems. Based on these strengths and 
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