By understanding the movement patterns of people, mathematical modelers can develop models that can better analyze and predict the spread of infectious diseases. People can come into close contact in their workplaces. This report describes methods to develop georeferenced commuting patterns that can be used to characterize the work-related movement of US populations and help agent-based modelers predict workplace contacts that result in disease transmission. We used a census data product called "Census Spatial Tabulation: Census Track of Work by Census Tract of Residence (STP64)" as the data source to develop commuting pattern data for agent-based synthesized populations databases and to develop map products to visualize commuting patterns in the United States. The three primary maps we developed show inbound, outbound, and net change levels of inbound versus outbound commuters by census tract for the year 2000. Net change counts of commuters are visualized as elevations. The results can be used to quantify and assign commuting patterns of synthesized populations among different census tracts.
Using geographic information systems to define and map commuting patterns as inputs to agent-based models
By David Chrest, William Wheaton.
June 2009 Open Access Peer Reviewed
Bibliography
-
Chrest, D., & Wheaton, W. (2009). Using geographic information systems to define and map commuting patterns as inputs to agent-based models. RTI Press. RTI Press Publication No. MR-0012-0906 https://doi.org/10.3768/rtipress.2009.rr.0012.0906
© 2021 RTI International. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Contact
To contact an author or seek permission to use copyrighted content, contact our editorial team