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Abstract
When fitting observations from a complex survey, the standard regression model 
assumes that the expected value of the difference between the dependent variable 
and its model-based prediction is zero, regardless of the values of the explanatory 
variables. A rarely failing extended regression model assumes only that the model 
error is uncorrelated with the model’s explanatory variables. When the standard 
model holds, it is possible to create alternative analysis weights that retain the 
consistency of the model-parameter estimates while increasing their efficiency by 
scaling the inverse-probability weights by an appropriately chosen function of the 
explanatory variables.

When a regression model is used to impute for missing item values in a complex 
survey and when item missingness is a function of the explanatory variables of the 
regression model and not the item value itself, near unbiasedness of an estimated 
item mean requires that either the standard regression model for the item in the 
population holds or the analysis weights incorporate a correctly specified and 
consistently estimated probability of item response. By estimating the parameters 
of the probability of item response with a calibration equation, one can sometimes 
account for item missingness that is (partially) a function of the item value itself.
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Introduction
When fitting a regression model with complex survey 
data, one frequently treats the finite population as a 
realization of independent trials from a conceptual 
population and tries to use the complex sample to 
estimate with probability-sampling principles either 
a maximum likelihood (ML) estimator computed 
from the finite population or the limit of the putative 
estimator as the population grows arbitrarily large 
(see Fuller, 1975 for linear regression and Binder, 
1983 more generally).

We do not take that “design-based” approach here. 
Instead, we adopt a model-based framework from 
Kott (2007, 2018). This framework is sensitive to 
the complex sampling design and to the possibility 
that many of the usual model assumptions may 
not hold in the population. Under this design-
sensitive framework, some methods developed in the 
conventional design-based framework are retained, 
such as fitting weighted estimating equations and 
sandwich variance/mean-squared-error estimation, 
but their interpretations change.

I begin this report by laying out the design-sensitive 
approach to regression modeling with complex 
survey data, which involves distinguishing between 
the robust standard model and the more general 
extended model. Estimating model parameters under 
the extended model requires the use of inverse-
probability weights (broadly defined here to include 
calibration adjustments), although those weights 
may not be needed under the standard model. Even 
when such weights are helpful under the standard 
model, it may be possible to modify them to increase 
the efficiency of parameter estimates. Then, I offer 
a description of variance estimation followed by a 
reference to some useful tests for determining whether 
using inverse-probability weights is necessary and 
whether the standard model holds in the population.

My focus then changes to using a standard regression 
model to impute for missing item values in an 
estimated total (or mean) by first assuming an item-
response model where item nonresponse is missing at 
random. This methodology is extended to situations 
where item nonresponse is not missing at random, 

providing a nearly unbiased estimate for an item 
mean in some sense when the standard model fails 
and a more efficient estimate when it does not.

I conclude the paper with a review of the ideas 
developed here and add speculations about 
imputation.

The Design-Sensitive Approach to 
Regression Modeling
Following Kott (2018), the standard regression model 
assumes that given any element (member) k of a 
population U, 

 yk = f(zkTβ) + εk, (1)

where

 E(εk |zk) = 0 for all zk, k∈U (2)

In Equation (1), yk is the dependent random 
variable being modeled whereas zk is a vector of 
P explanatory variables (covariates), one of which 
is 1 or the equivalent (some linear combination of 
the components of zk is 1 for all k∈U), and f(.) is a 
specified monotonic function. In particular, f(zkTβ) 
= zkTβ for a linear regression model whereas f(zkTβ) 
= exp(zkTβ)/[1 + exp(zkTβ)] for a logistic regression 
model, where β is an unknown vector of parameters 
that can be estimated using a sample drawn from 
U. Some of the components of zk can be random 
variables.

Poisson regression, where f(zkTβ) = exp(zkTβ), 
is often assumed when the dependent variable is 
restricted to positive values. This restriction can be 
extended to positive integers. In practice, Poisson 
regression often multiplies exp(zkTβ) by a known 
offset variable ok. For our purposes, this offset 
variable can be thought of as being incorporated into 
a revised dependent variable: yk* = yk/ok.

Few additional assumptions about the distribution 
and variance structure of the εk are needed in the 
above broadly specified version of the model until the 
issue of estimating the variance of an estimator for β 
arises. That is a subject I take up shortly.

A restriction imposed by the standard model in 
Equation (1) is that the expected value of the error 
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term εk is 0 no matter the value of zk. This assumption 
can fail. A generalization of the standard model is 
the extended model under which E(εk | zk) = 0 in 
Equation (2) is replaced by

 E(zkεk) = 0. (3)

In other words, εk need only have mean 0 
unconditionally (i.e., E(εk) = 0) rather than when 
conditioned on zk for any zk. Unconditional 
unbiasedness obtains because 1 is either a component 
of zk or a linear combination of the components of 
zk. Equation (3) simply requires εk to be uncorrelated 
with any random components of zk. Unlike the 
standard model, the more general extended model 
rarely fails, as long as the first three central moments 
of the components of zk are finite (formally, this 
means that as the population size M grows arbitrarily 
large, the limit of each component of   

_
 z   and of    M   −1   

∑ U   ( z  k    −  
_
 z   )   r  , where   

_
 z   =   M   −1   ∑ U    z  k     and r = 2 or 3, is 

finite).

Observe that the standard version of the simple linear 
model through the origin, yk = βzk + εk, is not exactly 
of the form specified by Equation (1) because it is 
missing an intercept. It similarly assumes E(εk |zk) = 
0. The extended version of this model assumes only 
E(εk) = 0.

The Group-Mean and Ratio Models
Suppose the population U can be divided into 
G mutually exclusive and exhaustive groups. Let 
δk = (δk1, δk2 …., δkG)T, where δkg = 1 when element 
k is in the gth group and 0 otherwise. Let us now 
investigate the linear regression model:

 yk = (qkδkT) β+ εk, (4)

where qk is a scalar, and E(εk|δk) = 0. When qk ≡ 1 
(or, equivalently, any other constant), Equation (4) 
is called the group-mean model, because the mean 
of every element in group g is the same: βg. When 
the qk vary within groups, Equation (4) is called the 
group-ratio model. This is a useful model in business 
surveys where qk is often a measure of size known for 
all elements in the population.

When G = 1, the group-mean model devolves into the 
population-mean model and the group-ratio model 
devolves into the population-ratio model. When 

G > 1 and qk ≡ 1 in Equation (4), the value βg is the 
mean of gth group, also called the domain mean of 
group g.

Unlike the group-mean model, the group-ratio model 
does not fit our formal definition of a regression model 
in Equation (1) because zk = δkqk does not contain 1 
among its components or the equivalent unless qk is a 
constant for k∈U. Equation (2) is effectively replaced 
by E(εk |δk) = 0 for all realized δk, k ∈ U.

As long as the yk are bounded, neither the group-
mean model nor the group-ratio model fails. 
Although the assumption that the yk are bounded 
may seems reasonable, a referee correctly pointed 
out that this assumption means that the yk cannot 
be normally distributed. Rather than formulating an 
asymptotic framework where, as B grows arbitrarily 
large, the probability that |yk| is greater than B tends 
toward 0 at an appropriate speed, let us concede the 
referee’s point and argue that in a finite world, the 
assumption that each yk is normally distributed is a 
never-realized idealization.

The Weighted Estimating Equation
For now, we will mostly restrict our attention here to 
probability samples. This means that every k ∈ U has 
a positive probability πk of being selected into the 
sample. Formally, πk ≥ Bπ > 0 for some Bπ.

Although populations from which probability 
samples are drawn are almost always finite, the 
samples themselves are often large. That is why it 
is reasonable to use asymptotics (arbitrarily large 
sample properties) when analyzing probability-
sample data. Moreover, when modeling a finite 
population, we are less interested in the population 
itself than in a mechanism that can be hypothesized 
to have generated that population and could continue 
to generate elements ad infinitum.

Consequently, we assume there is an infinite sequence 
of nested populations growing arbitrarily large and 
that a sample can be drawn from each using the same 
probability-sampling mechanism. The samples in the 
sequence of samples, although not necessarily nested 
within each other, also grow arbitrarily large. As a 
result, it is possible to take the probability limit of a 
statistic based on a sample as the expected number 
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of sampled elements grows arbitrarily large (as we 
advance from one population in the sequence of 
populations to the next ad infinitum).

Suppose ty is an estimator for the population total Ty. 
A sufficient condition for the probability limit of ty, 
which we denote p lim(ty), to be Ty as the population 
and sample sizes grow arbitrarily large is for the limit 
of the relative mean-squared error of t to converge to 0. 
When that happens, ty is a consistent estimator for Ty.

Letting M denote the number of elements in 
population U, it is not difficult to see that

  p lim { M   −1    ∑  
k∈U

   z  k   [ y  k   − f( x  k        T  𝛃)]   }  

 = p lim { M   −1    ∑  
k∈U

   z  k    ε  k    }  =  0  (5)

under the extended model (where E(zkεk) = 0) with 
mild assumptions about the values of the components 
of zk (e.g., they are bounded in number, and each 
have finite moments) and the variance structure of 
the εk (which we will discuss in some detail shortly).

Given a probability sample S with analysis weights 
{wk}, each (nearly) equal to the 1/πk,

  p lim { M   −1   ∑  
k∈S

   w  k    z  k   [ y  k   − f( x  k        T  𝛃)]   }  = 0  (6)

under mild additional conditions on the sampling 
design and population such that

  p lim Ψ  q   = 0,   (7)  

where

   Ψ  q   =  M   –1  ( ∑ 
S
    w  k    q  k    –  ∑ 

U
    q  k   ) ,  

and qk can equal 1, yk, a component of zk, or a 
product of the previous variables.

Sufficient additional assumptions include that each 
of the qk have finite moments and that the sample 
size grows arbitrarily large along with the population. 
I will make more assumptions about the sample 
design shortly.

Two sample-based values are said to be nearly equal 
when their ratio tends to 1 (in probability) as the 
sample size grows arbitrarily large. Similarly, an 
estimator is nearly unbiased when its relative bias 
tends to 0 as the sample size grows.

The analysis weights wk may not be exactly equal to 
the 1/πk . Sometimes, analysis weights are calibrated 
to increase the statistical efficiency of the resulting 
estimators (as in Deville and Särndal, 1992) or to 
account for unit nonresponse or frame under- or 
over-coverage (e.g., Kott, 2006). Except in the 
forthcoming discussion on variance estimation via 
linearization, we treat the wk as nearly equal to the 
inverse of the probability that element k is jointly 
in the frame, selected for the sample, and a sample 
respondent. We ignore the possibility of duplications 
in the frame. We treat S as the respondent sample and 
set wk = 0 when k ∉ S. For now, we assume there is no 
item nonresponse.

The wk are inserted into Equation (6) in case E(εk | 
wk) ≠ 0, a situation in which the analysis weights are 
said to be nonignorable in expectation (with respect 
to the model—a phrase that usually goes without 
saying). Full ignorability of the analysis weights or, 
equivalently, of the selection probabilities in the 
sense of Little and Rubin (2002), obtains when the 
conditional εk are independent of the wk. Observe 
that if the original random sample is selected with 
probability proportion to some component of zk, 
while the variance of εk is a function of that same 
component, then εk is clearly not independent of wk, 
and the weights are not ignorable, but they could still 
be ignorable in expectation (i.e., E(εk | wk) = 0 for 
every realized wk, k ∈ U).

Whether the standard or extended model is 
assumed to hold in the population, solving for b 
in the weighted estimating equation (Godambe & 
Thompson, 1974)

    ∑  
k∈S

   w  k    z  k   [ y  k   − f( z  k        T  b)]   = 0  (8)

provides a consistent estimator for β under mild 
conditions because

  b − 𝛃 =   [ M   −1 ∑  
k∈S

   w  k   f '( θ  k   )  z  k    z  k        T  ]    −1   M   −1   ∑  
k∈S

   w  k    z  k    ε  k   ,  (9)

for some θk between zkTb and zkTβ. This is a 
consequence of the mean-value theorem (see 
Kott, 2015 for an elaboration). An additional mild 
condition we assume is that

   A  θ   =  M   −1    ∑  
k∈S

   w  k   f '( θ  k   )  z  k    z  k        T    (10)
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  A =  M   −1    ∑    w   k   f '( z  k        T  b )  z  k   z  Tk            (11)
k∈S

and their probability limit, A*, has finite components 
and is positive definite. When M−1S wkzkεk converges 
to 0 in probability as the sample size grows arbitrarily 
large, b is a consistent estimator for β.

It is not hard to show that ∑U zk[yk − f(z Tk b)] = 0 
is the ML estimating equation for the population 
under the independent and identically distributed  
linear regression model and under logistic regression 
with independently sampled population elements. 
Nevertheless, the solution to Equation (8) is not 
ML when the weights vary or the εk within primary 
sampling units are correlated. Instead, the b solving 
Equation (8) is referred to as a pseudo-ML estimator 
for β (Skinner, 1989).

Pseudo-ML and Pfeffermann-Sverchkov Weight 
Adjustment
The pseudo-ML estimating equation in Binder (1983) is

∑ (f '( z  
   k        T  b)

     w       _ Tk  v        )  z  k   [ y  k   − f( z  
k k          b)]   = 0.  (12)

k∈S

It derives from being the probability-sampling analog 
of the ML estimating equation when v  = E(ε 2k k |zk) is 
known (up to a scaling constant), and E(εk εj |zk, zj) = 
0 for k ≠ j: ∑   U  (f '( z  k        T  b) /  v  k  )   z  k   [  y  k  − f(  z  k        T  b)]  = 0. Fo r 
ordinary least squares linear regression: f '(z Tk β) = 1; 
for ordinary logistic regression: f '(z Tk β) = f (z Tk β)  
(1 −  f (z Tk β)); and for ordinary Poisson regression: 
f '(z Tk β) = f (z Tk β). Thus, for all three: vk ∝  f '(z Tk β). 
This is not the case for generalized least squares linear 
regression, however, where the vk vary across the 
elements of the population or the εk are correlated in 
some manner.

If E(ε 2k |zk) ∝ v(zk) < ∞, and E(εk εi |zk, zi) = 0 for k ≠ 
i, then the pseudo-ML estimator b in Equation (12) 
is consistent under the standard model. When the 
standard model holds and the analysis weights are 
ignorable in expectation, however, a more efficient 
estimator for the model parameter β is the solution to   
∑ S   ( f '( z  k        T  b) /  v  k  )  z  k   [y   Tk   − f( z  k          b)]   = 0. 

When the standard model holds, Pfeffermann and 
Sverchkov (1999) point out that if, in addition, the 
weights are not ignorable in expectation, E(ε 2k |zk) = 
vk < ∞, and E(εk εi |zk, zi) = 0 for k ≠ i then a more 
efficient estimator than the solution to Equation 
(8) would factor each weight wk in Equation (11) 
by 1/ω(zk) where ω(zk) is an approximation for 
wkvk/f  '( z  k        T  b) when vk is known (up to a constant); 
otherwise v  can be replaced by e 2 Tk k  = [yk − f(zk b)]2.

A possible way of generating ω(zk) involves an 
unweighted Poisson regression of wke 2k  (or wk 
when vk ∝ h(zk) is assumed) on the components of 
zk = (z T1k, …, zPk)  and, perhaps, functions of those 
components (e.g., log(z1k)). Poisson regression is 
recommended because wke 2k  (and wk) is always 
positive. Recall that in Poisson regression log (wkvk) 
(or log(wk)) is modeled as a linear function of 
components or functions of components.

When the standard model holds in the population, 
and E(εk εi |zk, zi) ≈ 0 for k ≠ i can be assumed, one 
can try the following:

1. Fit the estimating equation in (8) and compute the 
e  = y Tk k − f(zk b) (this step is unnecessary when vk 
can be assumed to be proportional to h(zk) for a 
known h(.)).

2. Fit wke 2k  (or wk when vk ∝ h(zk) is assumed) 
on functions of the components of zk using 
unweighted Poisson regression. Call the fitted 
value ωv(zk) (when fitting wk, call the fitted value 
ψv(zk), then call ωv(zk) the product of ψv(zk) and 
h(zk)). Set ωk = ωv(zk)/f ′(z Tk b).

3. Adjust each wk in the estimating equation in (8) 
by multiplying it by 1/ωk.

4. Refit the estimating equation in (8) with the wk 
replaced by the adjusted weights from step 3 (i.e., 
wk/ωk)).

When the fit in step 2 is good, these steps should 
return more efficient estimators for the components 
of β than fitting Equation (8) and stopping. We will 
call this three- or four-step process or any variant of it 
(e.g., one using linear rather than Poisson regression 
in step 2) a P-S weight adjustment.
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Variance Estimation Via Linearization
We restrict attention for now to stratified or single-
stratum probability samples of primary sampling 
units (PSUs) of fixed size without unit nonresponse 
or coverage error. Additional stages of probability 
samples can be conducted independently within each 
PSU to draw the sample elements. We do not rule out 
samples of elements where the PSUs are completely 
enumerated or where each PSU is composed of a 
single element.

In our asymptotic framework, the number of sampled 
PSUs grows infinitely large along with the population. 
The number of strata may also grow infinitely large. If 
so, the number of PSUs in each stratum is assumed to 
be bounded. Alternatively, the number of strata can be 
fixed while the number of PSUs in each grows infinitely 
large. Scenarios where the number of strata grows large 
but not as fast as the number of sampled PSUs are also 
possible, but they are not explicitly treated here.

Whether the number of strata should be treated 
as fixed in an asymptotic framework depends on 
the design. For example, a design with 60 strata 
containing two sampled PSUs in each is more 
reasonably treated in an asymptotic framework where 
the number of strata grows large, whereas a design 
with four strata each having over 15 sampled PSUs is 
more reasonably treated in an asymptotic framework 
with a fixed number of strata.

Let h denote one of H strata, uk = (uk1, …, ukH)T 
the H-vector of stratum-inclusion identifiers for 
element k (i.e., ukh = 1 when k is in stratum h, and 0 
otherwise). Let N (n) denote the number of PSUs in 
the population (sample), Nh (nh) the number of PSUs 
in the population (sample) and stratum h, M (m) 
the number of elements in the population (sample), 
Mhj (mhj) the number of elements in the population 
(sample) and PSU j of stratum h, and Shj the set of mhj 
elements in PSU j of stratum h. We assume that there 
is a BM such that in every population in the sequence 
of populations:

 Mhj ≤ BM < ∞ for all hj. (13)

When First-Stage Stratification Is Ignorable in 
Expectation
Variance estimation given a stratified multistage 
sample can be tricky unless a simplifying assumption 
is made. Usually, the assumption is that the PSUs are 
randomly selected with replacement within strata.

We can instead make the following two ignorability 
assumptions about the stratum identifiers under the 
standard (extended) model when reasonable:

1. E(εk|zk,uk) = 0 (E(zkεk|uk) = 0 for the extended 
model); that is, the first-stage stratification is 
ignorable in expectation.

2. E(εkεj |zk,uk,zj,uj) = 0 ((E(zkεk zjεj |uk, uj) = 0 
for the extended model) when k and j are from 
different PSUs and is bounded otherwise.

Although it is likely that strata are chosen such 
that the mean of the yk differed across strata, it is 
nonetheless reasonable to assume that the E(εk|zk) 
(or E(zkεk)) are unaffected by the first-stage stratum 
identifiers especially because zk in Equation (1) may 
contain a bounded number (as the number of PSUs 
grows arbitrarily large) of stratum identifiers or 
functions of stratum identifiers (e.g., ukhzkp).

To estimate the variance of the consistent estimator b 
for β, one starts with this variation of Equation (9),

  b − 𝛃 =   [  ∑  
k∈S

   w  k   f '( θ  k   )  z  k    z  k        T  ]    −1    ∑  
k∈S

   w  k    z  k    ε  k   ,  (14)

for some θk between zkTb and zkTβ and the 
(previously made) assumption that Aθ = M−1∑S wk  
f '(θk)zkzkT and its probability limit, A*, have finite 
components and are positive definite. For now, we 
are assuming that the analysis weights, wk , equal 1/πk 
in this discussion of variance estimation under the 
extended model. For the standard model, the 1/πk can 
be scaled by a function of the components of zk.

From Equation (14), we can see the bias of b is nearly 
0. Consequently, a good estimator for its mean-
squared-error is also a good estimator for its variance.

As long as all nh ≥ 2, the design-based variance/mean-
squared-error estimator for b (from Binder, 1983) is
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  var(b) =  D ∑  
h=1

  
H

     n  h   _  n  h   − 1      

×  ∑  
j=1

  
 nh  

   ( ∑  
k∈S  hj 

w  k    z  k    e  k   −   1 _  n  h       ∑  
a=1

  
nh  

    ∑  
κ∈S  ha 

w  κ    z  κ    e  κ     )    

×    (  ∑  
k∈S  hj 

w  k    z  k    e  k   −   1 _  n  h       ∑  
a=1

  
nh  

    ∑  
κ∈S  ha 

w  κ    z  κ    e  κ     )    
T

 D (15)

            =   D  ∑  
h=1

  
H

     n  h   _  n  h   − 1   [  ∑  
j=1

  
 nh  

  (  ∑  
k∈S  hj 

w  k    z  k    e  k   ) (  ∑  
k∈S  hj 

w  k    z  k    e  k    )   T   

−   1 _  n  h     (  ∑  
a=1

  
 nh  

 ∑  
κ∈S  ha 

w  κ    z  κ    e  κ   ) (  ∑  
a=1

  
 nh  

 ∑  
κ∈S  ha 

w  κ    z  κ    e  κ   )   T        ]  D  

  where D =   [ ∑ S    w  k   f '( z  k        T  b )  z  k    z  k        T  ]    −1    estimates    
M   −1   A  θ  −1   (see Equation (10)),   and   e  k   =  y  k   − f( z  k        T  b ).                                                                        

This is often called the (Taylor-series) linearization 
estimator because, among other things, D is a 
linearized approximation of (MAθ)−1.

Our assumptions assure the near unbiasedness of 
the variance estimator in equation (15) (as n grows 
arbitrarily large) given a sampling design and a 
population such p lim(nΨq2) is bounded, where Ψq is 
defined in the equation after equation (7). They also 
assure the nearly unbiasedness of 

var  A  (b) = D ∑  
h=1

  H
    ∑  

j=1

  
 nh

    
   ( ∑  

k∈S
  
hj

  
   w  k    z  k    e  k   )      ( ∑  

k∈S
  
hj

w  k    z  k    e  k   )    T  D. (16)  

From a model-based viewpoint, the keys to both 
variance estimators are (1) the expressions

   E  hj        ε  =  ∑  
k∈S  hj  

   w  k    z  k    ε  k     (17)

in Equation (16) have mean 0 and are uncorrelated 
across PSUs, and (2) A* is the probability limit 
of M−1D−1. The use of robust sandwich-type 
variance estimates like Equations (15) and (16) 
(the D being the bread of the sandwich) allows 
the variance matrices of the Ehjε to be unspecified. 
Mild additional asymptotic assumptions allow Ehj =   
∑ k∈ S  hj      w  k    z  k    e  k    with ek = yk −zkTb = εk − zkT(b−β) to 
be used in place of its near equal Ehjε and M−1D to 
replace its near equal Aθ.

Additional variations of the variance/mean-squared-
error estimator in Equation (15) can be made if the 
analyst is willing to assume that the εk are uncorrelated 
across secondary sampling units or across elements. 

The more components there are in zk, the more 
reasonable the assumption that the εk are uncorrelated 
across elements (or another higher-stage of sampling 
like housing units in a household-based sample of 
individuals) and the more reasonable the assumption 
that the first-stage stratification is ignorable.

When First-Stage Stratification Is Not Ignorable
Suppose the first-stage stratification is not ignorable 
and again (for simplicity) wk = 1/πk. Under 
probability-sampling theory, the Ehjε could be 
uncorrelated and have a common mean within 
strata if the first-stage PSUs had been selected with 
replacement. That would have allowed the same 
PSU to be selected more than once, with each 
selection treated as independent with independent 
subsampling of elements. Equation (15) (but not 
Equation (16)) provides a nearly unbiased variance 
estimator for b under such a design. Under many 
probability-sampling designs employing without-
replacement sampling of a fixed number of PSUs, 
Equation (15) provides, if anything, a slight 
overestimation of the variances of the components of 
b (which are the diagonals of var(b)). We will assume 
our PSU sample has been drawn in such a manner 
and that the resulting bias in Equation (15) is small 
enough to be ignored in practice.

Graubard and Korn (2002) point out that when the 
number of (first-stage) strata remains the same as 
the population grows arbitrarily large, then Equation 
(15) provides a nearly unbiased variance estimator 
under the with-replacement sampling of PSUs only 
when the fraction of the element population in 
each stratum is fixed. Otherwise, the fraction of the 
population within each stratum is a component of 
the variance of b that Equation (15) fails to capture. 
To avoid that problem, we assume that the fraction of 
PSUs and elements within each stratum is fixed as the 
population grows arbitrarily large.

Observe that the variance estimator in Equation (15) 
can be rewritten as

  var(b) = var  A  (b) −  D ( ∑  
h=1

  
H

    1 _ ( n  h   − 1)     ∑  
j=1

  
 nh    

    ∑  
a=1

  
 nh

  a≠j  
  
    
E  hj    E  ha       T   ) D. 

If the Ehj ≈ Ehjε within each stratum h have a common 
mean, then the expected values of the diagonals of 
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var(b) (the estimated variances of the components of 
b) will tend to be no higher than the expected values 
of the diagonals of varA(b). They will tend to be 
lower when some of the stratum means are nonzero. 
That is, the diagonals of varA(b), if anything, tend to 
overestimate the variances of the components of b.

From the above expression we can see that practice 
of collapsing “similar” strata into variance strata for 
variance estimation purposes (using Equation (15) 
with the h indexing the variance strata rather than 
the design strata) can only bias variance estimation 
upward. How much upward bias depends on how 
dissimilar the expectations of the Ehj across the design 
strata being collapsed into a variance stratum. One 
popular complex sampling design selects a single PSU 
per design stratum and collapses pars of “adjacent” (in 
some sense) design strata into variance strata because 
Equation (15) requires each nh to be at least 2.

When every PSU in a design stratum is selected into 
the sample, these certainty PSUs become the variance 
strata for use in Equation (15) and the units chosen 
from them in the next stage of sampling (e.g., housing 
units selected from area clusters) are variance PSUs.

Calibrated Weight Adjustment
Let dk be the inverse of the probability that sampled 
element k has randomly selected for a stratified 
multistage sample before any weight adjustments 
for unit nonresponse, frame incompleteness, or 
efficiency improvement; dk = 0 when k ∈ U is not a 
sampled element. The value qk = wk/dk for sampled k 
is the product of possibly multiple calibration factors 
(qk = 0 otherwise). There can be multiple adjustments 
for nonresponse in a complex survey because 
nonresponse can occur at various levels (e.g., at the 
household and at the individual).

To simplify the exposition, we will assume that 
there is a single calibration factor of the form 
qk = Skq(xkTg), where q(t) is a monotonic function, 
such as q(t) = 1 + exp(t); xk is a vector of variables 
with a finite number of components, including 1 or 
the equivalent; Sk is 1 when k is in the respondent 
sample, 0 otherwise; and g (if it exists given the range 
restriction on q(t)) satisfies the following calibration 
equation (observe that a term in either of the two 

summations below is 0 when k is not in the sample; 
consequently, ∑k∈S could have been used in place 
of either ∑k∈U without changing the equation’s 
meaning):

    ∑  
k∈U

w  k    c  k    =   ∑  
k∈U

   d  k    S  k   q( x  k        T  g )  c  k    =     T  c  ,  (18)

where ck is a vector of calibration variables with 
the same number of components as xk (the range 
restrictions on q(t) may render Equation (18) 
unsolvable for g). The population total of ck—or a 
nearly unbiased estimate of that total— is known and 
denoted as Tc. In practice, the ck and xk are often but 
not always identical (with the group-ratio model in 
Equation (4), xk = δk while ck = δkqk).

When Equation (18) is used to create calibrated 
weights that account for unit nonresponse, the 
components of Tc can be estimates from the sample 
before unit nonresponse; that is, Tc = ∑U dkck. The 
probability of (unit) response is assumed to have the 
form 1/q(xkTγ), and the g that satisfies Equation (1) is 
a consistent estimator of γ . For example, if response 
is assumed to be a logistic function of xk, then 
qk ≈ 1+ exp(xkTγ).

We further assume that when an element is sampled, 
its probability of response is Poisson, that is, 
independent across the elements of the population. 
The respondent sample can be treated as a stratified 
multistage sample.

When Equation (18) is used to calibrate weights 
that account for coverage error, 1/q(xkTg) estimates 
the expected number of times element k is in the 
sampling frame (1/q(xkTγ)). This value can exceed 1 
when there is duplication in the frame. More often, 
the frame is incomplete, and 1/q(xkTγ) lies between 
0 and 1. Here, we will assume duplication does 
not occur in the frame for simplicity. In addition, 
the number of times k is in the sampling frame 
(0 or 1) is independent across population elements. 
Consequently, the sample can still be treated as 
stratified multistage for variance estimation purposes.

Both the models for response and frame 
undercoverage are selection models, either 
representing the self-selection of an element into the 
respondent sample or the “selection” of an element in 
the population into the sampling frame. 
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In the remainder of this section, we limit the 
discussion to response selection models for 
convenience.

Kott (2015) points out that when the calibration factor 
is not used for selection modeling but to increase the 
efficiency of estimated means and totals q(t) is often 
set at 1 + t (this is linear calibration), exp(t) (raking), 
or 1/(1 + t) (pseudo-empirical likelihood) and γ = 0. 
Linear calibration and raking are often also used 
for unit nonresponse adjustment, but then γ is no 
longer 0. For unit nonresponse adjustment, setting 
q(t) = [L+ exp(t)]/[1 + exp(t)/U] assumes response is 
a bounded logistic (or logit) function with response 
probabilities between 1/U and 1/L.

Let us assume for now that the Poisson selection model 
for response implied by q(xkTγ) is correct. In addition, 
when Tc is a random variable, assume it is uncorrelated 
with whether element k is a respondent when sampled. 
Under mild conditions, paralleling the conditions used 
to justify both Equation (9) and the consistency of b 
and (again) invoking the mean-value theorem:

          g − 𝛄  =   [ M   −1    ∑  
k∈U

   d  k    S  k   q'( φ  k   )  c  k    x  k        T  ]    −1    

     M   −1  [ T  c   −   ∑  
k∈U

      d  k    S  k   q( x  k        T  𝛄 )  c  k   ]  

for some φk between xkTg and xkTγ. As a result, g is a 
consistent estimator for γ.

Returning to the model in Equation (1) we are trying 
to fit, many of the components of xk will also often be 
components of zk. If they all were or if we replace the 
standard model assumption in Equation (2) by

      E( ε  k   |    z  k  ,  x  k   ) = 0   for all realized zk and xk, k∈U, (19)

then it is easy to see from

  
b − 𝛃  =   [ M   −1  ∑

  k∈U
w  k   f '( θ  k   )  z  k    z  k        T  ]    −1   M   −1  ∑

  k∈U
w  k    z  k    ε  k (20)

   

≈   [ M   −1    ∑  
k∈U

d  k    S  k   q( x  k        T  g ) f '( z  k        T  b )  z  k    z  k        T  ]    −1    

M   −1    ∑  
k∈U

         d  k    S  k   q( x  k        T  g )  z  k    ε  k     

that Equation (15) can be used to estimate the 
variance of b given Tc. The conditioning on Tc is 
needed when Tc itself is an estimator.

The assumption in Equation (19) collapses to 
that of the standard model in Equation (2) when 
the components of xk are also in zk. Under this 
assumption, we can replace wk by dk in defining b, 
and the estimator will remain consistent.

When the assumption in Equation (19) fails, b 
defined with wk remains a consistent estimator for β 
under the extended model, but variance estimation is 
confounded by the random variable g on the right-
hand side of Equation (20). It may be approximately 
equal to γ, but the approximation is not close enough 
to be ignored.

Let us assume that the probability sampled element 
k responds is 1/ q(xkTγ) and that this probability is 
independent of whether any other sampled element 
responds. It is not hard to see that

  b − 𝛃     ≈ A  *   −1   M   −1    ∑  
k∈U

   d  k    S  k   q( x  k        T  g )  z  k    ε  k    .

Let   ξ  k  *   be the pth component of M−1A*−1zkεk, so that 
the error of the pth component of b (making use of 
the mean-value theorem) is

∑  
k∈S

   w  k    ξ  k  *    =  M   −1   ∑  
k∈U

   d  k    { c  k  T  𝛅 * +  S  k  ( ξ  k  *  −  c  k  T  𝛅 * ) q( x  k  T  g)}    

≈  M   −1  ∑  
k∈U

d  k    { c  k  T  𝛅 * +  S  k  ( ξ  k  *  −  c  k  T  𝛅 * ) q( x  k  T  𝛄 )  

                         +   S  k  ( ξ  k   −  c  k  T  𝛅 * ) q'( x  k  T  𝛄 )  x  k  T (g − 𝛄)}    

  ≈  M   −1  ∑  
k∈U

   d  k    { c  k  T  𝛅 * +  S  k  ( ξ  k  *  −  c  k  T  𝛅 * ) q( x  k  T  𝛄)} , (21)  

  where  

               
𝛅 * = p lim {     Z (  ∑

  j∈U
d  j    S  j   q'( x  j  T  g )  x  j    c  j  T )    −1     

∑
  j∈U
   d  j    S  j   q'( x  j  T  g )  x  j    ξ  j  } (22)

is only needed for dropping the    
M   −1   ∑ U    d  k   { S  k  ( ξ  k   −  c  k  T  𝛅 * ) q'( x  k  T  𝛄 )  x  k  T (g − 𝛄)}    
term, which also requires asymptotic theory. Both 
xkT(g − γ) and   M   −1   ∑ U    d  k   { S  k  ( ξ  k  *  −  c  k  T  𝛅 * ) q'( x  k  T  𝛄)}    are 
Op(1/√n) under mild conditions, so their product is 
Op(1/n), which is small enough to be ignored.

Because the probability of response is Poisson, we  
can treat the sample as a stratified multistage design,  
with     ̃  ξ   k  *   =  M   −1  { c  k  T  𝛅 * +  S  k  ( ξ  k  *  −  c  k  T  𝛅 * ) q( x  k  T  𝛄)}   as 
the element values in an asymptotically equivalent 
expression for the error of the pth coefficient of 
b:   ∑ S    d  k     ˜ ξ   k  * . The linearized version of this, which 
is what we would actually use in the variance 
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estimator, is   ∑ S    d  k     ̃  ξk , with        ̃  ξk   =  M   −1  { c  k  T  𝛅 +  
S  k  ( ξ  k   −  c  k  T  𝛅 ) q( x  k  T  g)}   replacing the pth component 
of Dzkek in Equation (15) or (16),   ξ  k    being the 
pth component of M−1A*−1zk(yk − zkTb), and  
𝛅 =   ( ∑ U    d  j    S  j   q'( x  j  T  g )  x  j    c  j  T  )    −1   ∑ U    d  j    S  j   q'( x  j  T  g )  x  j    ξ  j     .   

With replication, we do an asymptotically equivalent 
exercise but without having to compute some of the 
complicated terms like ξk and δ when the standard 
model fails. Instead, replicate versions of g are 
computed in replicate calibration Equations (18). 
In the next section, we explore one such replication 
technique: the jackknife.

When calibrating to a constant Tc in Equation (18) 
(or, more appropriately, both sides of Equation 
(18) divided by M, where M−1Tc remains constant 
as the population size grows),     ̃  ξk    becomes   M   −1  { S  k  ( 
ξ  k   −  c  k  T  𝛅 * ) q( x  k  T  𝛄)}   because   ∑ U    d  k    c  k  T  𝛅 *   is replaced 
by a constant Tcδ*, which does not contribute to 
the variance. Moreover, some of the components 
of Tc can come from the full sample whereas some 
components can be constants or provided from 
outside samples.

Jackknife Variance Estimation
Replication techniques provide alternative methods 
for estimating the variance of b that are especially 
useful when fitting the extended regression model 
with calibrated weights. Here, we focus on two forms 
of jackknife variance estimation, starting with the 
popular delete-1 (PSU) jackknife. Although often 
considered a technique for estimating variances 
under probability-sampling theory (as in Rust, 1985), 
delete-1 jackknife can also be viewed as a variance 
estimator under a robust model (Wu, 1986).

Redefine Shj slightly as the set of all respondents 
in variance PSU j and stratum h, and let Sh+ be all 
respondents in variance stratum h. We define the hjth 
jackknife replicate of b as the solution (b(hj)) to

 ∑  
k∈S

w  k        (hj)   z  k   [ y  k   − f( z  k        T   b   (hj) )]   = 0,  (23)

where   w  k        (hj)  = 0  when  k ∈  S  hj  , 

  w  k        (hj)  = [ n  h   / ( n  h   − 1 ) ]  w  h    when  k ∈  S  h+   but k ∉  S  hj  , 

and   w  k        (hj)  =  w  k     otherwise.

This is identical to the estimator b (for β) in Equation 
(8) computed from a sample paralleling S except 
that only nh−1 variance PSUs from stratum h are 
included, that is, all the variance PSUs in h except hj. 
Consequently, analogous to Equations (9) and (10)

  b   (hj)  − 𝛃 =   [ A  θ  (hj) ]    −1   M   −1    ∑  
k∈S

   w  k        (hj)   z  k    ε  k   , (24)

  where   A  θ  (hj)  =  M   −1    ∑  
k∈S

   w  k        (hj)  f '( θ  k   )  z  k    z  k        T  .  

The limit of   A  θ  (hj)   as the number of sampled PSUs gets 
arbitrarily large is A*, just like Aθ. Consequently,

b   (hj)  −  b ≈   [A *]    −1   M   −1  (  ∑  
k∈S

   w  k        (hj)   z  k    ε  k    − ∑  
k∈S

w  k    z  k    ε  k   )     

 
= [A *]    −1   M   −1  ([  1 _  n  h   − 1 ∑

  k∈S
  
h+  

  k∉ S  hj   
 

   w  k    z  k    ε  k] − ∑
  k∈S
  
hj

  
   
 

w  k    z  k    ε  k   ) 

 = [A *]    −1   M   −1     n  h   _  n  h   − 1  ( [ 1 _  n  h ∑  
k∈S  h+ 

w  k    z  k    ε  k   ] −  ∑  
k∈S  hj 

w  k    z  k    ε  k   )  ,

and some more algebra reveals that the delete-1 
jackknife variance estimator for b,

  va r  D1J  (b ) = ∑  
h=1

  
H

     n  h   − 1 _  n  h       ∑  
j=1

  
 nh  

   ( b   (hj)  − b)   ( b   (hj)  − b)   T  ,    (25)

is nearly equal to the (Taylor-series) linearization 
variance estimator in Equation (15).  

There are two main differences between var(b) in 
Equation (15) and varD1J(b) in Equation (25). The 
former replaces the εk with ek. This often causes 
var(b) to slightly underestimate the variances of the 
components of b when the number of sampled PSUs 
is not “arbitrarily large,” such as in actual finite-world 
application. The delete-1 jackknife does not make 
that replacement. Instead, it treats   A  θ  (hj)   as if it were 
the same as Aθ. This often causes varD1J(b) to slightly 
overestimate the variances of the components of b 
when the number of sampled PSUs is not arbitrarily 
large.

The delete-1 jackknife produces as many sets of 
jackknife replicate weights as there are variance 
PSUs. Many find handling so many sets of weights 
(including the original weights) burdensome. When 
nh = 2 in every variance stratum, an alternative 
delete-1 jackknife creates replicate weights for only 
one variance PSU per variance stratum and computes

  va r  D1J       -alt  (b ) =  ∑  
h=1

  
H

  ( b   (h1)  − b )  ( b   (h1)  − b)   T   . (26)
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The Delete-a-Group Jackknife
Several packages can compute other jackknife 
variance estimates with a reduced number of sets of 
jackknife replicate weights (one for each replicate). 
The generic form of the jackknife is

  va r  GJ  (b ) = ∑  
r=1

  
R
   M  r  ( b   (r)  − b )  ( b   (r)  − b)   T  ,    (27)

where each b(r) is computed with its own set of 
replicate weights. Observe that Equations (25) and 
(26) have this generic form.

To run a delete-a-group (DAG) jackknife, first sort 
the variance PSUs by variance stratum and assign 
each variance PSU systematically to one of R replicate 
groups, which are not replicates, although there 
will ultimately be R sets of DAG jackknife replicate 
weights. In addition, Mr = (R-1)/R for all r in 
Equation (27). The number of replicate groups needs 
to be large enough for the resulting variance estimator 
to be relatively stable, say R = 30.

Let h denote a variance stratum as before, r a replicate 
group, and Shr the set of sampled respondents in both 
variance stratum h and replicate group r. Let nh be the 
number of sampled PSUs in variance stratum h.

When nh ≥ R, the R DAG jackknife replicate weights 
are computed for each sampled respondent k in 
variance stratum h, as follows:

  w  k  (r)  = 0  when   k ∈  S   hr  , and

  w  k  (r)  =  w  k    n  h   / ( n  h   −  n  hr   )    when   k ∉  S   hr ,  which  
 explains the name.

When nh < R, the R DAG jackknife replicate weights 
for a respondent in stratum h are as follows:

  w  k  (r)  =  w  k     when   S   hr   is empty,

when:

  w  k  (r)  =  w  k   [1 − ( n  h   − 1 ) Z]    when   k ∈  S   hr , 

  w  k  (r)  =  w  k   (1 + Z)   when   S   hr   is not empty and   
 k ∉  S   hr , 

where  Z =  √ 
_______________________

    { [R / (R − 1)]    [ n  h  ( n  h   − 1)]    −1 }   . 

The proof that the DAG jackknife works can be found 
in Kott (2001). All replicate variance estimators with a 
form like Equation (27) may exhibit a slight tendency 

to have an upward bias (which shrinks to 0 as the 
number of sampled PSUs grows arbitrarily large) 
caused by b(r) in (b(r) − b) being computed with   
A  θ  (r)  =  M   −1   ∑ S    w  k        (r)  f '( θ  k   )  z  k    z  k        T    rather than with   
A  θ    as is b.

When calibrating weights with Equation (18), 
suppose some of the components of Tc come from 
independently drawn samples originating outside 
of S, each with the same number of DAG jackknife 
replicate groups as S, and the remaining components 
are either constants or come from S before unit 
nonresponse. A DAG jackknife variance estimator 
can capture both the variance contributed from the 
outside sample and from S (and from adjusting for 
unit nonresponse).

Imputing Missing Item Values with a 
Regression Model
In this section, we change focus from model fitting to 
prediction, particularly the prediction needed when 
imputing for a missing survey value. Most complex 
sample surveys suffer from item nonresponse. This 
occurs when a sampled (unit) respondent k ∈ S 
provides item values for some survey items but not 
for others. Suppose all survey respondents provide 
values for the vector of variables zkA but only some 
provide a value for yk. To estimate the population 
total, Ty = ∑U yk, with an analysis-weighted sample, 
one can compute

   t  y   =  ∑  
k∈S

    w  k    y  k     R  k   +  ∑  
k∈S

    w  k   f( z  k        T  b) (1 −  R  k   ) ,  (28)

where Rk = 1 when k is an item respondent, 0 
otherwise, and zk is a subset of zkA. Analogously, 
for estimating the population mean, Ty/M, one 
can replace all wk in Equation (28) by wk/∑S wj. In 
Equation (28), when Rk = 0, the missing yk is imputed 
by ykI = (f(zkTb).

Suppose the standard regression model relating yk 
to f(zkTβ) in Equations (1) and (2) holds and the 
probability of item response for each unit respondent 
k is wholly a function of the components of zk. 
Solving 

 ∑  
k∈S 

w  k   Φ( z  k   )  z  k   [ y  k   − f( z  k        T  b)]   R  k   =  0,                                                                                         
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for b, where Φ(zk) is any scalar function of zk, and 
plugging that b into Equation (28) renders ty in 
Equation (28) a nearly unbiased estimator for Ty in 
some sense.

When the standard model does not hold or the 
probability of item response is not wholly a function 
of the components of zk, we can alternatively attempt 
to find a b satisfying

 
∑

  k∈S
   w  k    z  k   [ y  k   − f( z  k        T  b)] (1 −  R  k   ) =  0,

We are restricted for computational purposes to item-
responding members of S. Consequently, we can try 
to find a b satisfying

  ∑  
k∈S

w  k    z  k   [ y  k   − f( z  k        T  b)] (1 − E( R  k   |    y  k  ,  z  k        A  ))    R  k   _ 
E( R  k   |    y  k  ,  z  k        A )

   = 0   

  or 

 ∑
  

k∈S
w  k    r  k    z  k   [ y  k   − f( z  k        T  b)]  =  0, (29)

  

  
 
 where       w  k   =    I  k   _ E( I  k   |   ⋅ )    is the analysis weight,

r  k   =  1 − E( R  k   |    y  k  ,  z  k        A )  ____________ E( R  k   |    y  k  ,  z  k        A )    R  k     is the item-response weight,  

Ik = 1 when k ∈ S (0 otherwise), and    |   ⋅   denotes con-
ditioning on all the variables used in determining the 
probability of inclusion in respondent sample S.
This assumes we have fit an item-response model 
for Rk. We will describe a method for assuming and 
fitting such a model later.

In this section, we always assume that E(Ik|.) is 
correctly specified and consistently estimated (recall 
that the analysis weights can include adjustments 
to compensate for unit nonresponse and frame 
undercoverage). In addition, if the item-response 
model   E( R  k   |    y  k  ,  z  k        A )   is correctly specified, then 
satisfying

∑  
k∈S

   w  k    z  k   [ y  k   − f( z  k        T  b)]  (1 − E( R  k   |    y  k  ,  z  k        A  ))    R  k   _ E( R  k   |    y  k  ,  z  k        A )  =  0,      

implies

   
E  R   [  ∑

  k∈U   
   w  k    y  k  (1 −  R  k  )  − ∑

  k∈U
   w  k   f( z  k        T  b ) (1 −  R  k  ) ]  = 0.

     
 
   

As a result, Equation (28) provides a nearly 
unbiased estimated for Ty in some sense regardless 
of whether the standard regression model holds 
as long as zk contains 1 or the equivalent because   
∑ S    w  k    r  k   [ y  k   − f( z  k        T  b)]  =  0   is a component of 
Equation (29).

An Example
A common example of imputation with a regression 
model is imputation with the group-ratio model in 
Equation (4). When qk varies across the k, zk = qkδk 
does not contain an intercept as we noted previously. 
Nevertheless,

   t  y    = ∑  
k∈U

      w  k    y  k     R  k    +  ∑  
g=1

  
G

    ∑  
k∈U

   w  k    d  kg    q  k    b  g   (1 −  R  k  )     

= ∑  
k∈U

   w  k    y  k     R  k    +   

  ∑  
g=1

  
G

    ∑  
k∈U

   w  k    δ  kg    q  k  (1 −  R  k  )    
  ∑ 
k∈U

   w  k    δ  kg    y  k   [1 − E( R  k   |    y  k  ,  z  k        A )]    
 R  k  
 _ 

E( R  k   |    y  k  ,  z  k        A )
   
   ______________________________   

 ∑ 
k∈U

   w  k    δ  kg    q  k   [1 − E( R  k   |    y  k  ,  z  k        A )]    
 R  k  
 _ 

E( R  k   |    y  k  ,  z  k        A )

 

=  ∑ 
U

    w  k    y  k     R  k   +  ∑  
g=1

  
G

    ∑  
k∈U

w  k    δ  kg    q  k  (1 −  R  k  ) 
 ∑ 
k∈U

   w  k    δ  kg    y  k    R  k   
 ___________   ∑ 

k∈U
   w  k    δ  kg    q  k    R  k      .  

The last line assumes   E( R  k   |    y  k  ,  z  k        A )   is constant within 
each group.

Observe that ty above is nearly unbiased in some 
sense when either of the following is true:

1. The standard group-ratio model holds in the 
population, the analysis weights are ignorable, and 
the probability of item nonresponse is wholly a 
function of zk (combined with E(wk|.) = 1); or

2. The probabilities of item response are constant 
within each group (and E(wk|.) = 1).

This property has been called “double robustness,” but 
double protection against item nonresponse bias is a 
more accurate description.

The leaves of a decision tree (classification or 
regression) for yk is a group-mean outcome model. 
Note that the tree can only be fit among item 
respondents. Decision tree methodology can be used 
to fit a group-mean response model. In this case, the 
entire unit respondent sample can be used to fit the 
model.

Assuming and Fitting an Item-Response Model
More generally, suppose it is reasonable to assume 
that the item-response model has the form: 

   E( R  k   |  ixk   ) = h(ixk     Ti𝛄 ) ,      (30)

where h(.) is a known function (e.g., h(θ) = 1/[1 + 
exp(θ)]); ixk is a vector of survey variables known for 
all item respondents, which means it may contain 
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yk along with components of zkA and functions of 
components of zkA; and iγ is a vector of unknown 
parameters. The prefix i on ixk and iγ differentiates 
them from the vectors in unit response function 1/ 
q(xkTγ) described previously.

Let zk0 be a vector containing components of zkA (and 
functions of components of zkA) having the same 
number of components as ixk. If the item-response 
model in Equation (30) is correctly specified, then a 
consistent estimator for iγ will be the solution ig of 
the calibration equation (if it exists given the range 
restrictions on h(.))

 ∑  
k∈U

   w  k    z  k 0  [  1 − h  (  i    x  k        Ti g) _ 
h  (  i    x  k        Ti  g)

  ]   R  k    =  ∑  
k∈U

   w  k    z  k 0  [1 −  R  k  ] , 

or its near equivalent

 ∑  
k∈U

   w  k    z  k 0     R  k   _ 
h(i    x  k     Ti g)

    =  ∑  
k∈U

   w  k    z  k 0  .  (31)

The number of components in zk0 is flexible. One 
can always increase the number of components in 
zk0 to equal the number of components in ixk, thus 
making the number of implicit equations in (31) (the 
components of zk0) equal the number of unknowns in 
iγ. If ixk has fewer components than zk, then we can 
generate zk0 with

     z  k 0  =   ∑  
k∈S

   R  j i x j    z  j      T    (   ∑  
k∈S

   R  j    z  j    z  j      T )    −1   z  k  , 

which essentially regresses the components of ixk 
onto zk using ordinary least squares applied to the 
item respondents.

In many applications, ixk in the assumed item-
response model (Equation (30)) is equal to zk0, and 
zk0 is made up of components of zk and functions 
of components of zk. As a result, the solution b to 
Equation (29) leads to doubly robust imputation 
when zk contains an intercept (or the equivalent) 
when either the standard regression model holds and 
the true (but not specified) item-response model is a 
function of zk, or when the assumed item-response 
model fit using Equation (31) is indeed the true item-
response model.

Suppose the standard regression model in Equations 
(1) and (2) holds. If the model errors (the εk in 
Equation (1)) are uncorrelated and the true item-
response model is a function of zk, then in the spirit 
of P-S adjustments, we should be able to increase 

the efficiency of b by dividing the wkrk in Equation 
(29) by ωk = ω(zk), which is 1/f '(zkTb) times the 
predicted value of a Poisson regression of wkrk[yk − 
f(zkTb)]2 on appropriately chosen components of zk 
and functions of those components. To obtain double 
robustness, we may have to add ωk to the components 
of zk in Equation (1), when it is not already a 
linear function of those components, to assure that   
∑ S    w  k    r  k   [ y  k   − f( z  k        T  b)]  = 0 . 

Nonignorable Item Nonresponse
When yk is a component of ixk in the item-response 
model (that is, item nonresponse is nonignorable), 
the situation can become more complicated. Fitting 
Equations (31) and then (29) to determine rk and 
then b will produce a nearly unbiased estimator for 
Ty when the item-response model in Equation (30) is 
correctly specified.

If both the item-response model and the standard 
regression model in Equations (1) and (2) are 
correctly specified, then b is a nearly unbiased 
estimator for β. This can be softened slightly because 
of the standard regression model assumption in 
Equation (2). The estimation of [1 − E(Rk|ixk)]/ 
E(Rk|ixk)] = [1 − h(ixkTiγ)]/ h(ixkTiγ) within rk = 
[1 − E(Rk|ixk)]/ E(Rk|ixk)] need only be correctly 
specified up to a function of zk. Consequently, if we 
fit E(Rk| ixk)] with 1/[1 + exp(ykgy + zkTgz)] but the 
true response function is 1/[1 + exp(ykγy)φ(zk)] for 
some unknown φ(zk), and gy is a consistent estimator 
for γy, then b remains nearly unbiased under the 
standard regression model. In practice, gy may not be a 
consistent estimator for γy after fitting 1/[1 + exp(ykgy 
+ zkTgz)], and so b would not be nearly unbiased. Still, 
b may be a reasonable, if imperfect, estimator for β.

We can again potentially increase the efficiency of 
b by dividing the wkrk in Equation (29) by ωk as 
described previously. For estimates of totals and 
means to remain nearly unbiased under the response 
model, we may need to add ωk to the components of 
zk in Equation (1).
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Some Concluding Remarks

Summary
Complex surveys are usually designed to estimate 
population totals, means, and simple ratios of 
collected survey items. Sometimes, however, analysts 
want to fit regression models among the items. The 
population mean of a survey item is the simplest 
example of a standard regression model, one that 
always holds in the population but whose consistent 
estimation can be affected by members of the sample 
having unequal probabilities of selection. As we have 
seen, whether the standard model holds and whether 
unequal selection probabilities affect consistent 
estimation are two distinct issues.

Given an assumed statistical model, E(yk) = f(zkTβ), 
relating a survey item yk for population member k to 
an explanatory vector of survey items zk, the standard 
regression model holds when E{[yk − f(zkTβ)]|zk} = 0 
for all realized values of zk in the population. That 
model can, and often does, fail. One reason for its 
failure is that a complex survey is limited in the 
variables that can serve as components of zk. A more 
reasonable model may require more explanatory 
variables than available in the survey.

Even when the assumed standard model does not 
fail, the expectation of the model errors, εk = yk − 
f(zkTβ), may depend on the elements’ probabilities 
of sample selection. Assuming some mild conditions 
hold, by injecting the inverses of the element selection 
probabilities—the analysis weights {wk}—into an 
estimating equation, ∑S wkzk [yk − f(zkTb)] = 0 
(where S denotes the responding sample) and solving 
for b, one can consistently estimate β under the 
standard model. Solving this weighted estimating 
equation for b also consistently estimates β under the 
more general extended model, which only assumes 
E{zk [yk − f(zkTβ)]} = 0.

An analysis weight wk can have several factors: 
the inverse of the probability that element k was 
randomly selected from the sampling frame, the 
inverse of the estimated probability that selected 
element k responded to the survey, the estimated 
inverse of the probability that population element k 
was in the sampling frame from which the sample 

was selected, and a small scaling adjustment to 
increase the efficiency of estimated item totals. It 
is important to realize that the second and third 
components involve estimating a function that can be 
mis-specified. The first and fourth do not.

If the standard regression model holds, then b 
remains a consistent estimator when each analysis 
weight in the estimating equation is multiplied by 
a scalar function of the explanatory variables in zk. 
That scalar function can be chosen to increase the 
efficiency of the components of b. In addition, as long 
as both the true probability of unit response (or frame 
undercoverage) and the estimate of that probability 
are both functions of the explanatory variables in 
zk, then using the adjusted analysis weights in the 
weighted estimating equation produces a consistent 
estimator for b when the standard regression model 
holds even when the function used to estimate the 
unit response probability is mis-specified.

Indeed, when the standard regression model holds, 
then one need not weight the estimating equation 
in computing a nearly unbiased b when the inverse 
of the probability of selection into the respondent 
sample is a function of the regression model’s 
explanatory variables. Fitting a standard regression 
model requires weighting only when the probability 
of selection into the respondent sample when 
conditioned on the regression model’s explanatory 
variables is a function of the dependent variable.

Often, with more explanatory variables in zk, there 
is less need for analysis weights in the estimating 
equation. Similarly, with more components in zk, the 
standard model is more likely to hold. Kott (2018) 
discusses tests for assessing whether the standard 
model holds or whether analysis weights are needed 
for estimating a regression model.

When estimating a population total or mean with a 
complex survey, imputing for a missing item value 
with the predicted value of a regression model using 
other survey items as the explanatory variables can 
lead to nearly unbiased estimation in some sense 
when the standard model holds in the population. 
In fact, when the standard model holds and item 
missingness is a function of the explanatory variables 
and not the item being imputed, it is unnecessary to 
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use weights when fitting the regression model. Using 
the products of the analysis weight and an item-
response weight when fitting the regression model 
can protect against the failure of the regression model 
when the item-response model used for computing 
the item-response weights is correctly specified and 
consistently estimated.

We saw that a calibration equation in (31) can be used 
to fit an item-response model. A calibration equation 
in (18) can likewise be used to fit a unit response model 
(or a coverage model) when adjusting analysis weights. 
When response is partially a function of the dependent 
variable given the regression model’s explanatory 
variables, these response models need to be correctly 
specified when the standard regression model fails.

When response is partially a function of the 
dependent variable, the standard model holds, and 
the ratio of the true and the fitted but mis-specified 
response models is a function of the regression 
model’s explanatory variables; using the fitted 
response model to create the analysis or item-
response weight will then produce nearly unbiased 
estimates. Although this last condition is not likely to 
be satisfied in practice, it suggests that using a mis-
specified response model may remove some potential 
for bias resulting from nonignorable nonresponse at 
the unit or item level.

The DAG jackknife provides a useful method for 
estimating variances of coefficient estimates in a 
regression model or item means when there is item 
nonresponse. Linearization is difficult in either case 
when analysis weights are calibrated. An exception 
occurs when estimating coefficients under the 
standard regression model, and the calibration 
adjustments are function of the explanatory variables 
in zk and perhaps when a vector xk such that E(εk |zk, 
xk) = 0 for all realized zk and xk.

Speculations on Imputation and Variance 
Estimation
The DAG jackknife can be used to measure the 
variance of an estimated infinite population mean 
(the population mean as the population size grows 
arbitrarily large) computed with Equation (28), where 
each analysis weight is replaced by wk/∑S wj. With 

G sets of replicate analysis weights {wk(g), g = 1, …, 
G} and item-response weights {rk(g), g = 1, …, G}, 
there are likewise G versions of b(g) and G versions of 
the imputed value for a missing yk: f(zkTb); namely, 
f(zkT b(g)), g = 1, …, G. Each b(g) is computed with 
a replicate version of Equation (29). If it exists, an 
efficiency increasing weighting factor, 1/ωk, need not 
be replicated.

When a goal is to estimate the distribution of the yk in 
the population, the implicit imputation of a missing 
yk with f(zkTb) in Equation (28) is not helpful. When 
f(.) is logistic, we can impute a missing yk with 1 
with probability f(zkTb) and with 0 otherwise. To 
determine the probabilities of imputation with 
1 in a way that, at most, marginally distorts the 
estimated mean, sort the m item nonrespondents 
in random order and assign the first in that order 
probability 1/(2m), so that missing yk is imputed with 
1 when f(zkTb) > 1/(2m) and 0 otherwise. Similarly, 
assign the second in order probability 3/(2m), the 
third probability 5/(2m), …, and the last probability 
(2m – 1)/(2m). In a DAG jackknife replicate, it is the 
size of f(zkTb(r)) that is compared with 1/(2m), …, or 
(2m – 1)/(2m).

When f(.) is linear, the following seems reasonable: 
add the residual yj − f(zjTb) from one of the item 
respondents to f(zkTb) when yk is missing. Similarly, 
when f(.) is Poisson and the imputed values need 
to be positive, add [f(zkTb)/ f(zjTb)][yj − f(zjTb)]. 
To choose which item respondent’s residual to 
use as a donor for element k with a missing item 
value, first sort the item respondents in size order 
of the f(zjTb) and select a systematic probability 
proportional to wjrj (or wjrj/ωj if more appropriate) 
sample of m donors, where m is the number of item 
nonrespondents and then assign the residuals of the 
m selected donors to the m item nonrespondents 
sorted by the size of f(zkTb). This matches donors and 
recipients in some sense while limiting the distortion 
of the estimated mean caused by adding residuals. In 
every jackknife replicate, the same donor residual is 
used when needed for a particular item nonrespondent 
to avoid overestimating the contribution to variance 
from adding residuals to the imputation.
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For a variable that can be either positive or 0, we can 
first impute whether the variable is positive using 

a logistic regression, then if imputed to be positive, 
impute the positive value with a Poisson regression.
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