• Journal Article

A Role for the Corpus-Callosum in Visual Area V4 of the Macaque


Desimone, R., Moran, J., Schein, S. J., & Mishkin, M. (1993). A Role for the Corpus-Callosum in Visual Area V4 of the Macaque. Visual Neuroscience, 10(1), 159-171.


The classically defined receptive fields of V4 cells are confined almost entirely to the contralateral visual field. However, these receptive fields are often surrounded by large, silent suppressive regions, and stimulating the surrounds can cause a complete suppression of response to a simultaneously presented stimulus within the receptive field. We investigated whether the suppressive surrounds might extend across the midline into the ipsilateral visual field and, if so, whether the surrounds were dependent on the corpus callosum, which has a widespread distribution in V4. We found that the surrounds of more than half of the cells tested in the central visual field representation of V4 crossed into the ipsilateral visual field, with some extending up to at least 16 deg from the vertical meridian. Much of this suppression from the ipsilateral field was mediated by the corpus callosum, as section of the callosum dramatically reduced both the strength and extent of the surrounds. There remained, however, some residual suppression that was not further reduced by addition of an anterior commissure lesion. Because the residual ipsilateral suppression was similar in magnitude and extent to that found following section of the optic tract contralateral to the V4 recording, we concluded that it was retinal in origin. Using the same techniques employed in V4, we also mapped the ipsilateral extent of surrounds in the foveal representation of V1 in an intact monkey. Results were very similar to those in V4 following commissural or contralateral tract sections. The findings suggest that V4 is a central site for long-range interactions both within and across the two visual hemifields. Taken with previous work, the results are consistent with the notion that the large suppressive surrounds of V4 neurons contribute to the neural mechanisms of color constancy and figure-ground separation