Finding the genes underlying complex traits is difficult. We show that new sequencing technology combined with traditional genetic techniques can efficiently identify genetic regions underlying a complex and quantitative behavioral trait. As a proof of concept we used phenotype-based introgression to backcross loci that control innate food preference in Drosophila simulans into the genomic background of D. sechellia, which expresses the opposite preference. We successfully mapped D. simulans introgression regions in a small mapping population (30 flies) with whole-genome resequencing using light coverage (∼1×). We found six loci contributing to D. simulans food preference, one of which overlaps a previously discovered allele. This approach is applicable to many systems, does not rely on laborious marker development or genotyping, does not require existing high quality reference genomes, and needs only small mapping populations. Because introgression is used, researchers can scale mapping population size, replication, and number of backcross generations to their needs. Finally, in contrast to more widely used mapping techniques like F(2) bulk-segregant analysis, our method produces near-isogenic lines that can be kept and reused indefinitely.
Next-generation mapping of complex traits with phenotype-based selection and introgression
Earley, E. J., & Jones, C. D. (2011). Next-generation mapping of complex traits with phenotype-based selection and introgression. Genetics, 189(4), 1203-1209. https://doi.org/10.1534/genetics.111.129445
Abstract
Publications Info
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.
Meet the Experts
View All ExpertsRecent Publications
Article
Multifaceted risk for non-suicidal self-injury only versus suicide attempt in a population-based cohort of adults
Article
Long-term effects of a diet supplement containing Cannabis sativa oil and Boswellia serrata in dogs with osteoarthritis following physiotherapy treatments
Article
Use of a web-based portal to return normal individual research results in Early Check
Article