The purpose of this work was to demonstrate an approach to groundwater remedial design that is automated, cost-effective, and broadly applicable to contaminated aquifers in different geologic settings. The approach integrates modeling and optimization for use as a decision support framework for the optimal design of groundwater remediation systems employing pump and treat and re-injection technologies. The technology resulting from the implementation of the methodology, which we call Physics-Based Management Optimization (PBMO), integrates physics-based groundwater flow and transport models, management science, and nonlinear optimization tools to provide stakeholders with practical, optimized well placement locations and flow rates for remediating contaminated groundwater at complex sites.
Groundwater remediation design using physics-based flow, transport, and optimization technologies
Deschaine, L., Lillys, T. P., & Pinter, J. (2013). Groundwater remediation design using physics-based flow, transport, and optimization technologies. Environmental Systems Research, 2(6). https://doi.org/10.1186/2193-2697-2-6
Abstract
Publications Info
To contact an RTI author, request a report, or for additional information about publications by our experts, send us your request.
Meet the Experts
View All ExpertsRecent Publications
Article
The daily association between affect and alcohol use: A meta-analysis of individual participant data
Article
The use of patient experience feedback in rehabilitation quality improvement and codesign activities
Article
Protection of forest ecosystems in the eastern United States from elevated atmospheric deposition of sulfur and nitrogen
Article