• Journal Article

Developmental stages of the CD (Sprague-Dawley) rat skeleton after maternal exposure to ethylene glycol

Citation

Marr, M., Price, C., Myers, C., & Morrissey, R. E. (1992). Developmental stages of the CD (Sprague-Dawley) rat skeleton after maternal exposure to ethylene glycol. Teratology, 46(2), 169-181.

Abstract

Ethylene glycol (EG), a chemical which causes skeletal malformations in rats, was administered by gavage to sperm positive CD rats on gestational days (gd) 6 through 15 at doses of 0 or 2,500 mg/kg/day to assess its effects on the pre- and postnatal skeletal development. Dams and fetuses/pups were killed on gd 18, 20, postnatal day (pnd) 1, 4, 14, 21, or 63, and offspring were double-stained for examination of skeletal malformations and degree of ossification of rapidly developing skeletal districts. No difference in gestational day of delivery between controls and the EG-treated dams was seen. Fetal weights per litter were significantly decreased with EG treatment in both the gd 18 and 20 groups. Pup body weight on pnd 1 was significantly below controls; however, EG had no effect on pup body weight on pnd 4-63. The percentage of fetuses/pups with skeletal malformations per litter was significantly increased after EG exposure for all time points except at pnd 63, with a predominance of axial skeletal defects. The percentages of total ossification, of sternabrae ossified, and of vertebral centra ossified were significantly reduced in the EG groups on gd 20 and on pnd 1-21, but not on gd 18 or on pnd 63. When the ossification data were subjected to statistical analysis with fetal/pup weights as a covariate, the values for EG-exposed pups on gd 20 were not statistically significantly different from the control values. The reduced ossification values for EG-exposed pups on pnd 1-21 retained statistical significance even after covariate analysis. There was no effect of dose or body weight on ossification of fore- or hindlimb digits. In conclusion, the differences in incidence of skeletal alterations observed prenatally and through pnd 21 were not evident by pnd 63, suggesting that perinatal skeletal abnormalities may not always be permanent