• Journal Article

Conformational change in the 16S rRNA in the Escherichia coli 70S ribosome induced by P/P- and P/E-site tRNAPhe binding

Citation

Noah, J. W., Shapkina, T. G., Nanda, K., Huggins, B., & Wollenzien, P. (2003). Conformational change in the 16S rRNA in the Escherichia coli 70S ribosome induced by P/P- and P/E-site tRNAPhe binding. Biochemistry, 42(49), 14386-14396.

Abstract

The effects of P/P- and P/E-site tRNA(Phe) binding on the 16S rRNA structure in the Escherichia coli 70S ribosome were investigated using UV cross-linking. The identity and frequency of 16S rRNA intramolecular cross-links were determined in the presence of deacyl-tRNA(Phe) or N-acetyl-Phe-tRNA(Phe) using poly(U) or an mRNA analogue containing a single Phe codon. For N-acetyl-Phe-tRNA(Phe) with either poly(U) or the mRNA analogue, the frequency of an intramolecular cross-link C967 x C1400 in the 16S rRNA was decreased in proportion to the binding stoichiometry of the tRNA. A proportional effect was true also for deacyl-tRNA(Phe) with poly(U), but the decrease in the C967 x C1400 frequency was less than the tRNA binding stoichiometry with the mRNA analogue. The inhibition of the C967 x C1400 cross-link was similar in buffers with, or without, polyamines. The exclusive participation of C967 with C1400 in the cross-link was confirmed by RNA sequencing. One intermolecular cross-link, 16S rRNA (C1400) to tRNA(Phe)(U33), was made with either poly(U) or the mRNA analogue. These results indicate a limited structural change in the small subunit around C967 and C1400 during tRNA P-site binding sensitive to the type of mRNA that is used. The absence of the C967 x C1400 cross-link in 70S ribosome complexes with tRNA is consistent with the 30S and 70S crystal structures, which contain tRNA or tRNA analogues; the occurrence of the cross-link indicates an alternative arrangement in this region in empty ribosomes